优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 一元二次方程的应用 / 解答题
初中数学

一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.

(1)若降价3元,则平均每天销售数量为  件;

(2)当每件商品降价多少元时,该商店每天销售利润为1200元?

来源:2018年江苏省盐城市中考数学试卷
  • 题型:未知
  • 难度:未知

温州某企业安排65名工人生产甲、乙两种产品,每人每天生产2件甲或1件乙,甲产品每件可获利15元.根据市场需求和生产经验,乙产品每天产量不少于5件,当每天生产5件时,每件可获利120元,每增加1件,当天平均每件利润减少2元.设每天安排 x 人生产乙产品.

(1)根据信息填表:

产品种类

每天工人数(人 )

每天产量(件 )

每件产品可获利润(元 )

  

  

15

x

x

  

(2)若每天生产甲产品可获得的利润比生产乙产品可获得的利润多550元,求每件乙产品可获得的利润.

(3)该企业在不增加工人的情况下,增加生产丙产品,要求每天甲、丙两种产品的产量相等.已知每人每天可生产1件丙(每人每天只能生产一件产品),丙产品每件可获利30元,求每天生产三种产品可获得的总利润 W (元 ) 的最大值及相应的 x 值.

来源:2018年浙江省温州市中考数学试卷
  • 题型:未知
  • 难度:未知

根据衢州市统计局发布的统计数据显示,衢州市近5年国民生产总值数据如图1所示,2016年国民生产总值中第一产业,第二产业,第三产业所占比例如图2所示.

请根据图中信息,解答下列问题:

(1)求2016年第一产业生产总值(精确到1亿元)

(2)2016年比2015年的国民生产总值增加了百分之几?(精确到 1 % )

(3)若要使2018年的国民生产总值达到1573亿元,求2016年至2018年我市国民生产总值的平均增长率(精确到 1 % )

来源:2017年浙江省衢州市中考数学试卷
  • 题型:未知
  • 难度:未知

随着某市养老机构(养老机构指社会福利院、养老院、社区养老中心等)建设稳步推进,拥有的养老床位不断增加.

(1)该市的养老床位数从2013年底的2万个增长到2015年底的2.88万个,求该市这两年(从2013年度到2015年底)拥有的养老床位数的平均年增长率;

(2)若该市某社区今年准备新建一养老中心,其中规划建造三类养老专用房间共100间,这三类养老专用房间分别为单人间 ( 1 个养老床位),双人间 ( 2 个养老床位),三人间 ( 3 个养老床位),因实际需要,单人间房间数在10至30之间(包括10和 30 ) ,且双人间的房间数是单人间的2倍,设规划建造单人间的房间数为 t

①若该养老中心建成后可提供养老床位200个,求 t 的值;

②求该养老中心建成后最多提供养老床位多少个?最少提供养老床位多少个?

来源:2016年浙江省湖州市中考数学试卷
  • 题型:未知
  • 难度:未知

某烘焙店生产的蛋糕礼盒分为六个档次,第一档次(即最低档次)的产品每天生产76件,每件利润10元.调查表明:生产每提高一个档次的蛋糕产品,该产品每件利润增加2元.

(1)若生产的某批次蛋糕每件利润为14元,此批次蛋糕属第几档次产品;

(2)由于生产工序不同,蛋糕产品每提高一个档次,一天产量会减少4件.若生产的某档次产品一天的总利润为1080元,该烘焙店生产的是第几档次的产品?

来源:2017年四川省眉山市中考数学试卷
  • 题型:未知
  • 难度:未知

某商品的进价为每件40元,售价为每件60元时,每个月可卖出100件;如果每件商品的售价每上涨1元,则每个月少卖2件.设每件商品的售价为 x ( x 为正整数),每个月的销售利润为 y 元.

(1)当每件商品的售价是多少元时,每个月的利润刚好是2250元?

(2)当每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?

来源:2017年四川省甘孜州中考数学试卷
  • 题型:未知
  • 难度:未知

巴中市某楼盘准备以每平方米5000元的均价对外销售,由于有关部门关于房地产的新政策出台后,部分购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4050元的均价开盘销售,若两次下调的百分率相同,求平均每次下调的百分率.

来源:2017年四川省巴中市中考数学试卷
  • 题型:未知
  • 难度:未知

安顺市某商贸公司以每千克40元的价格购进一种干果,计划以每千克60元的价格销售,为了让顾客得到更大的实惠,现决定降价销售,已知这种干果销售量 y (千克)与每千克降价 x (元 ) ( 0 < x < 20 ) 之间满足一次函数关系,其图象如图所示:

(1)求 y x 之间的函数关系式;

(2)商贸公司要想获利2090元,则这种干果每千克应降价多少元?

来源:2019年贵州省安顺市中考数学试卷
  • 题型:未知
  • 难度:未知

某公司投入研发费用80万元 ( 80 万元只计入第一年成本),成功研发出一种产品.公司按订单生产(产量 = 销售量),第一年该产品正式投产后,生产成本为6元 / 件.此产品年销售量 y (万件)与售价 x (元 / 件)之间满足函数关系式 y = x + 26

(1)求这种产品第一年的利润 W 1 (万元)与售价 x (元 / 件)满足的函数关系式;

(2)若该产品第一年的利润为20万元,那么该产品第一年的售价是多少?

(3)在(2)的条件下,第二年,该公司将第一年的利润20万元 ( 20 万元只计入第二年成本)再次投入研发,使产品的生产成本降为5元 / 件.为保持市场占有率,公司规定第二年产品售价不超过第一年的售价,另外受产能限制,销售量无法超过12万件.请计算该公司第二年的利润 W 2 至少为多少万元.

来源:2018年山东省青岛市中考数学试卷
  • 题型:未知
  • 难度:未知

为积极响应新旧动能转换,提高公司经济效益,某科技公司近期研发出一种新型高科技设备,每台设备成本价为30万元,经过市场调研发现,每台售价为40万元时,年销售量为600台;每台售价为45万元时,年销售量为550台.假定该设备的年销售量 y (单位:台)和销售单价 x (单位:万元)成一次函数关系.

(1)求年销售量 y 与销售单价 x 的函数关系式;

(2)根据相关规定,此设备的销售单价不得高于70万元,如果该公司想获得10000万元的年利润,则该设备的销售单价应是多少万元?

来源:2018年山东省德州市中考数学试卷
  • 题型:未知
  • 难度:未知

今年,我市某中学响应习总书记“足球进校园”的号召,开设了“足球大课间”活动,现需要购进100个某品牌的足球供学生使用.经调查,该品牌足球2015年单价为200元,2017年单价为162元.

(1)求2015年到2017年该品牌足球单价平均每年降低的百分率;

(2)选购期间发现该品牌足球在两个文体用品商场有不同的促销方案:

试问去哪个商场购买足球更优惠?

来源:2017年山东省烟台市中考数学试卷
  • 题型:未知
  • 难度:未知

工人师傅用一块长为 10 dm ,宽为 6 dm 的矩形铁皮制作一个无盖的长方体容器,需要将四角各裁掉一个正方形.(厚度不计)

(1)在图中画出裁剪示意图,用实线表示裁剪线,虚线表示折痕;并求长方体底面面积为 12 d m 2 时,裁掉的正方形边长多大?

(2)若要求制作的长方体的底面长不大于底面宽的五倍,并在容器外表面进行防锈处理,侧面每平方分米的费用为0.5元,底面每平方分米的费用为2元,裁掉的正方形边长多大时,总费用最低,最低为多少?

来源:2017年山东省潍坊市中考数学试卷
  • 题型:未知
  • 难度:未知

列方程解应用题:

某玩具厂生产一种玩具,按照控制固定成本降价促销的原则,使生产的玩具能够及时售出,据市场调查:每个玩具按480元销售时,每天可销售160个;若销售单价每降低1元,每天可多售出2个.已知每个玩具的固定成本为360元,问这种玩具的销售单价为多少元时,厂家每天可获利润20000元?

来源:2017年山东省菏泽市中考数学试卷
  • 题型:未知
  • 难度:未知

某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量 y (本 ) 与每本纪念册的售价 x (元 ) 之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本.

(1)请直接写出 y x 的函数关系式;

(2)当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元?

(3)设该文具店每周销售这种纪念册所获得的利润为 w 元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少?

来源:2016年辽宁省葫芦岛市中考数学试卷
  • 题型:未知
  • 难度:未知

为满足市场需求,新生活超市在端午节前夕购进价格为3元 / 个的某品牌粽子,根据市场预测,该品牌粽子每个售价4元时,每天能出售500个,并且售价每上涨0.1元,其销售量将减少10个,为了维护消费者利益,物价部门规定,该品牌粽子售价不能超过进价的 200 % ,请你利用所学知识帮助超市给该品牌粽子定价,使超市每天的销售利润为800元.

来源:2016年辽宁省朝阳市中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学一元二次方程的应用解答题