优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 一元二次方程的应用 / 解答题
初中数学

为进一步促进义务教育均衡发展,某市加大了基础教育经费的投入,已知2015年该市投入基础教育经费5000万元,2017年投入基础教育经费7200万元.

(1)求该市这两年投入基础教育经费的年平均增长率;

(2)如果按(1)中基础教育经费投入的年平均增长率计算,该市计划2018年用不超过当年基础教育经费的 5 % 购买电脑和实物投影仪共1500台,调配给农村学校,若购买一台电脑需3500元,购买一台实物投影需2000元,则最多可购买电脑多少台?

来源:2017年广西桂林市中考数学试卷
  • 题型:未知
  • 难度:未知

为响应国家全民阅读的号召,某社区鼓励居民到社区阅览室借阅读书,并统计每年的借阅人数和图书借阅总量(单位:本).该阅览室在2014年图书借阅总量是7500本,2016年图书借阅总量是10800本.

(1)求该社区的图书借阅总量从2014年至2016年的年平均增长率;

(2)已知2016年该社区居民借阅图书人数有1350人,预计2017年达到1440人.如果2016年至2017年图书借阅总量的增长率不低于2014年至2016年的年平均增长率,那么2017年的人均借阅量比2016年增长 a % ,求 a 的值至少是多少?

来源:2017年广西北海市中考数学试卷
  • 题型:未知
  • 难度:未知

红旗连锁超市花2000购进一批糖果,按 80 % 的利润定价无人购买,决定降价出售,但仍无人购买.结果又一次降价后才售完,但仍盈利 45 . 8 % ,两次降价的百分率相同,问每次降价的百分率是多少?

来源:2016年四川省遂宁市中考数学试卷
  • 题型:未知
  • 难度:未知

随着国家“惠民政策”的陆续出台,为了切实让老百姓得到实惠,国家卫计委通过严打药品销售环节中的不正当行为,某种药品原价200元 / 瓶,经过连续两次降价后,现在仅卖98元 / 瓶,现假定两次降价的百分率相同,求该种药品平均每次降价的百分率.

来源:2016年四川省巴中市中考数学试卷
  • 题型:未知
  • 难度:未知

某种商品的标价为400元/件,经过两次降价后的价格为324元/件,并且两次降价的百分率相同.

(1)求该种商品每次降价的百分率;

(2)若该种商品进价为300元/件,两次降价共售出此种商品100件,为使两次降价销售的总利润不少于3120元.问第一次降价后至少要售出该种商品多少件?

来源:2016年湖南省永州市中考数学试卷
  • 题型:未知
  • 难度:未知

某蛋糕产销公司A品牌产销线,2015年的销售量为9.5万份,平均每份获利1.9元,预计以后四年每年销售量按5000份递减,平均每份获利按一定百分数逐年递减;受供给侧改革的启发,公司早在2014年底就投入资金10.89万元,新增一条B品牌产销线,以满足市场对蛋糕的多元需求,B品牌产销线2015年的销售量为1.8万份,平均每份获利3元,预计以后四年销售量按相同的份数递增,且平均每份获利按上述递减百分数的2倍逐年递增;这样,2016年,AB两品牌产销线销售量总和将达到11.4万份,B品牌产销线2017年销售获利恰好等于当初的投入资金数.

(1)求A品牌产销线2018年的销售量;

(2)求B品牌产销线2016年平均每份获利增长的百分数.

来源:2016年湖北省宜昌市中考数学试卷
  • 题型:未知
  • 难度:未知

随着粤港澳大湾区建设的加速推进,广东省正加速布局以5 G等为代表的战略性新兴产业,据统计,目前广东5 G基站的数量约1.5万座,计划到2020年底,全省5 G基站数是目前的4倍,到2022年底,全省5 G基站数量将达到17.34万座.

(1)计划到2020年底,全省5 G基站的数量是多少万座?

(2)按照计划,求2020年底到2022年底,全省5 G基站数量的年平均增长率.

来源:2019年广东省广州市中考数学试卷
  • 题型:未知
  • 难度:未知

工人师傅用一块长为12分米,宽为8分米的矩形铁皮制作一个无盖长方体容器,需要将四角各裁掉一个正方形.(厚度不计)

(1)请在图中画出裁剪示意图,用实线表示裁剪线,虚线表示折痕;并求当长方体底面面积为32平方分米时,裁掉的正方形边长是多少?

(2)若要求制作的长方体的底面长不大于底面宽的5倍(长大于宽),并将容器外表面进行防锈处理,侧面每平方分米的费用为0.5元,底面每平方分米的费用为2元,求裁掉的正方形边长为多少时,总费用最低,最低费用为多少元?

来源:2018年内蒙古巴彦淖尔市中考数学试卷
  • 题型:未知
  • 难度:未知

某广告公司设计一幅周长为16米的矩形广告牌,广告设计费为每平方米2000元.设矩形一边长为 x,面积为 S平方米.

(1)求 Sx之间的函数关系式,并写出自变量 x的取值范围;

(2)设计费能达到24000元吗?为什么?

(3)当 x是多少米时,设计费最多?最多是多少元?

来源:2017年内蒙古包头市中考数学试卷
  • 题型:未知
  • 难度:未知

某地的特色农产品在市场上颇具竞争力,其中香菇远销全国各地,上市时,外商王经理按市场价格10元/千克在该市收购了1800千克香菇存放入冷库中,据预测,香菇的市场价格每天每千克将上涨0.5元,但冷库存放这批香菇时每天需要支出各种费用合计240元,而且香菇在冷库中最多保存90天,同时,平均每天有6千克的香菇损耗不能出售.

(1)若存放 x天后,将这批香菇一次性出售,设这批香菇的销售总金额为 y元,试写出 yx之间的函数关系式.

(2)王经理想获得利润22500元,需将这批香菇存放多少天后出售?

(3)王经理将这批香菇存放多少天后出售可获得最大利润?最大利润是多少?

来源:2016年内蒙古鄂尔多斯市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,一块长5米宽4米的地毯,为了美观设计了两横、两纵的配色条纹(图中阴影部分),已知配色条纹的宽度相同,所占面积是整个地毯面积的 17 80

(1)求配色条纹的宽度;

(2)如果地毯配色条纹部分每平方米造价200元,其余部分每平方米造价100元,求地毯的总造价.

来源:2016年内蒙古赤峰市中考数学试卷
  • 题型:未知
  • 难度:未知

一个矩形周长为56厘米.

(1)当矩形面积为180平方厘米时,长宽分别为多少?

(2)能围成面积为200平方厘米的矩形吗?请说明理由.

来源:2017年广东省深圳市中考数学试卷
  • 题型:未知
  • 难度:未知

某地区2014年投入教育经费2900万元,2016年投入教育经费3509万元.

(1)求2014年至2016年该地区投入教育经费的年平均增长率;

(2)按照义务教育法规定,教育经费的投入不低于国民生产总值的百分之四,结合该地区国民生产总值的增长情况,该地区到2018年需投入教育经费4250万元,如果按(1)中教育经费投入的增长率,到2018年该地区投入的教育经费是否能达到4250万元?请说明理由.

(参考数据: 1 . 21 = 1 . 1 , 1 . 44 = 1 . 2 , 1 . 69 = 1 . 3 , 1 . 96 = 1 . 4

来源:2016年广西贺州市中考数学试卷
  • 题型:未知
  • 难度:未知

为了经济发展的需要,某市2014年投入科研经费500万元,2016年投入科研经费720万元.

(1)求2014至2016年该市投入科研经费的年平均增长率;

(2)根据目前经济发展的实际情况,该市计划2017年投入的科研经费比2016年有所增加,但年增长率不超过15%,假定该市计划2017年投入的科研经费为a万元,请求出a的取值范围.

来源:2016年广西贵港市中考数学试卷
  • 题型:未知
  • 难度:未知

在直角墙角AOBOAOB,且OAOB长度不限)中,要砌20m长的墙,与直角墙角AOB围成地面为矩形的储仓,且地面矩形AOBC的面积为96m2

(1)求这地面矩形的长;

(2)有规格为0.80×0.80和1.00×1.00(单位:m)的地板砖单价分别为55元/块和80元/块,若只选其中一种地板砖都恰好能铺满储仓的矩形地面(不计缝隙),用哪一种规格的地板砖费用较少?

来源:2016年广西百色市中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学一元二次方程的应用解答题