如图,公交车行驶在笔直的公路上,这条路上有 , , , 四个站点,每相邻两站之间的距离为5千米,从 站开往 站的车称为上行车,从 站开往 站的车称为下行车,第一班上行车、下行车分别从 站、 站同时发车,相向而行,且以后上行车、下行车每隔10分钟分别在 , 站同时发一班车,乘客只能到站点上、下车(上、下车的时间忽略不计),上行车、下行车的速度均为30千米 小时.
(1)问第一班上行车到 站、第一班下行车到 站分别用时多少?
(2)若第一班上行车行驶时间为 小时,第一班上行车与第一班下行车之间的距离为 千米,求 与 的函数关系式;
(3)一乘客前往 站办事,他在 , 两站间的 处(不含 , 站),刚好遇到上行车, 千米,此时,接到通知,必须在35分钟内赶到,他可选择走到 站或走到 站乘下行车前往 站.若乘客的步行速度是5千米 小时,求 满足的条件.
众志成城抗疫情,全国人民在行动.某公司决定安排大、小货车共20辆,运送260吨物资到 地和 地,支援当地抗击疫情.每辆大货车装15吨物资,每辆小货车装10吨物资,这20辆货车恰好装完这批物资.已知这两种货车的运费如下表:
目的地 车型 |
地(元 辆) |
地(元 辆) |
大货车 |
900 |
1000 |
小货车 |
500 |
700 |
现安排上述装好物资的20辆货车(每辆大货车装15吨物资,每辆小货车装10吨物资)中的10辆前往 地,其余前往 地,设前往 地的大货车有 辆,这20辆货车的总运费为 元.
(1)这20辆货车中,大货车、小货车各有多少辆?
(2)求 与 的函数解析式,并直接写出 的取值范围;
(3)若运往 地的物资不少于140吨,求总运费 的最小值.
直播购物逐渐走进了人们的生活.某电商在抖音上对一款成本价为40元的小商品进行直播销售,如果按每件60元销售,每天可卖出20件.通过市场调查发现,每件小商品售价每降低5元,日销售量增加10件.
(1)若日利润保持不变,商家想尽快销售完该款商品,每件售价应定为多少元?
(2)小明的线下实体商店也销售同款小商品,标价为每件62.5元.为提高市场竞争力,促进线下销售,小明决定对该商品实行打折销售,使其销售价格不超过(1)中的售价,则该商品至少需打几折销售?
为了促进学生加强体育锻炼,某中学从去年开始,每周除体育课外,又开展了“足球俱乐部1小时”活动.去年学校通过采购平台在某体育用品店购买 品牌足球共花费2880元, 品牌足球共花费2400元,且购买 品牌足球数量是 品牌数量的1.5倍,每个足球的售价, 品牌比 品牌便宜12元.今年由于参加俱乐部人数增加,需要从该店再购买 、 两种足球共50个,已知该店对每个足球的售价,今年进行了调整, 品牌比去年提高了 , 品牌比去年降低了 ,如果今年购买 、 两种足球的总费用不超过去年总费用的一半,那么学校最多可购买多少个 品牌足球?
在“抗击疫情”期间,某学校工会号召广大教师积极开展了“献爱心捐款”活动,学校拟用这笔捐款购买 、 两种防疫物品.如果购买 种物品60件, 种物品45件,共需1140元;如果购买 种物品45件, 种物品30件,共需840元.
(1)求 、 两种防疫物品每件各多少元;
(2)现要购买 、 两种防疫物品共600件,总费用不超过7000元,那么 种防疫物品最多购买多少件?
一水果店是 酒店某种水果的首选供货商,水果店根据该酒店以往每月的需求情况,本月初专门为他们准备了 的这种水果.已知水果店每售出 该水果可获利润10元,未售出的部分每 将亏损6元,以 (单位: , 表示 酒店本月对这种水果的需求量, (元 表示水果店销售这批水果所获得的利润.
(1)求 关于 的函数表达式;
(2)问:当 酒店本月对这种水果的需求量如何时,该水果店销售这批水果所获的利润不少于22000元?
为增强学生体质,丰富学生课余活动,学校决定添置一批篮球和足球.甲、乙两家商场以相同的价格出售同种品牌的篮球和足球,已知篮球价格为200元 个,足球价格为150元 个.
(1)若学校计划用不超过3550元的总费用购买这款篮球和足球共20个,且购买篮球的数量多于购买足球数量的 .学校有哪几种购买方案?
(2)若甲、乙两商场各自推出不同的优惠方案:甲商场累计购物超过500元后,超出500元的部分按 收费;乙商场累计购物超过2000元后,超出2000元的部分按 收费.若学校按(1)中的方案购买,学校到哪家商场购买花费少?
商场从某厂以75元 件的价格采购一种商品,售价是100元 件.厂家与商场约定:若商场一次性采购达到或超过400件,厂家按每件5元返利给 商场.商场没有售完的,可以以65元 件退还给厂家.设 商场售出该商品 件,问: 商场对这种商品的销量至少要多少时,他们的获利能达到9600元?
在整数的除法运算中,只有能整除与不能整除两种情况,当不能整除时,就会产生余数,现在我们利用整数的除法运算来研究一种数 “差一数”.
定义:对于一个自然数,如果这个数除以5余数为4,且除以3余数为2,则称这个数为“差一数”.
例如: , ,所以14是“差一数”;
,但 ,所以19不是“差一数”.
(1)判断49和74是否为“差一数”?请说明理由;
(2)求大于300且小于400的所有“差一数”.
新冠疫情期间,口罩成为了人们出行必备的防护工具.某药店三月份共销售 , 两种型号的口罩9000只,共获利润5000元,其中 , 两种型号口罩所获利润之比为 .已知每只 型口罩的销售利润是 型口罩的1.2倍.
(1)求每只 型口罩和 型口罩的销售利润;
(2)该药店四月份计划一次性购进两种型号的口罩共10000只,其中 型口罩的进货量不超过 型口罩的1.5倍,设购进 型口罩 只,这10000只口罩的销售总利润为 元.该药店如何进货,才能使销售总利润最大?
为增加学生阅读量,某校购买了“科普类”和“文学类”两种书籍,购买“科普类”图书花费了3600元,购买“文学类”图书花费了2700元,其中“科普类”图书的单价比“文学类”图书的单价多 ,购买“科普类”图书的数量比“文学类”图书的数量多20本.
(1)求这两种图书的单价分别是多少元?
(2)学校决定再次购买这两种图书共100本,且总费用不超过1600元,求最多能购买“科普类”图书多少本?
小明购买 , 两种商品,每次购买同一种商品的单价相同,具体信息如下表:
次数 |
购买数量(件 |
购买总费用(元 |
|
|
|
||
第一次 |
2 |
1 |
55 |
第二次 |
1 |
3 |
65 |
根据以上信息解答下列问题:
(1)求 , 两种商品的单价;
(2)若第三次购买这两种商品共12件,且 种商品的数量不少于 种商品数量的2倍,请设计出最省钱的购买方案,并说明理由.
某学校准备购买若干台 型电脑和 型打印机.如果购买1台 型电脑,2台 型打印机,一共需要花费5900元;如果购买2台 型电脑,2台 型打印机,一共需要花费9400元.
(1)求每台 型电脑和每台 型打印机的价格分别是多少元?
(2)如果学校购买 型电脑和 型打印机的预算费用不超过20000元,并且购买 型打印机的台数要比购买 型电脑的台数多1台,那么该学校至多能购买多少台 型打印机?
众志成城抗疫情,全国人民在行动.某公司决定安排大、小货车共20辆,运送260吨物资到 地和 地,支援当地抗击疫情.每辆大货车装15吨物资,每辆小货车装10吨物资,这20辆货车恰好装完这批物资.已知这两种货车的运费如下表:
目的地 车型 |
地(元 辆) |
地(元 辆) |
大货车 |
900 |
1000 |
小货车 |
500 |
700 |
现安排上述装好物资的20辆货车(每辆大货车装15吨物资,每辆小货车装10吨物资)中的10辆前往 地,其余前往 地,设前往 地的大货车有 辆,这20辆货车的总运费为 元.
(1)这20辆货车中,大货车、小货车各有多少辆?
(2)求 与 的函数解析式,并直接写出 的取值范围;
(3)若运往 地的物资不少于140吨,求总运费 的最小值.
为改善城市人居环境,《成都市生活垃圾管理条例》(以下简称《条例》 于2021年3月1日起正式施行.某区域原来每天需要处理生活垃圾920吨,刚好被12个 型和10个 型预处置点位进行初筛、压缩等处理.已知一个 型点位比一个 型点位每天多处理7吨生活垃圾.
(1)求每个 型点位每天处理生活垃圾的吨数;
(2)由于《条例》的施行,垃圾分类要求提高,在每个点位每天将少处理8吨生活垃圾,同时由于市民环保意识增强,该区域每天需要处理的生活垃圾比原来少10吨.若该区域计划增设 型、 型点位共5个,试问至少需要增设几个 型点位才能当日处理完所有生活垃圾?
试题篮
()