如图,正方形 的边长为 ,动点 从点 出发以 的速度沿着边 运动,到达点 停止运动,另一动点 同时从点 出发,以 的速度沿着边 向点 运动,到达点 停止运动,设点 运动时间为 , 的面积为 ,则 关于 的函数图象是
A.B.
C.D.
如图①,在矩形 中, 是 上一点,点 从点 沿折线 运动到点 时停止;点 从点 沿 运动到点 时停止,速度均为每秒1个单位长度.如果点 、 同时开始运动,设运动时间为 , 的面积为 ,已知 与 的函数图象如图②所示,以下结论:① ;② ;③当 时, ;④当 时, 是等腰三角形;⑤当 时, ,其中正确的有
A.2个B.3个C.4个D.5个
如图,在四边形 中, , , , , 、 、 分别是 、 、 上的点, , ,点 从点 出发,以每秒1个单位长度的速度沿折线 向点 运动,同时点 从点 出发,以相同的速度沿折线 向点 运动,当其中一个点到达后,另一个点也停止运动.设 的面积为 ,运动时间为 秒,则 与 函数关系的大致图象为
A.B.
C.D.
如图1,矩形 中,点 为 的中点,点 沿 从点 运动到点 ,设 , 两点间的距离为 , ,图2是点 运动时 随 变化的关系图象,则 的长为
A. |
4 |
B. |
5 |
C. |
6 |
D. |
7 |
如图,等腰直角三角形 , , ,以点 为中心的正方形 边长为 , ,正方形 与等腰直角三角形 重叠部分的面积为 ,则大致能反映 与 之间的函数关系的图象为
A.B.
C.D.
如图, 、 、 、 为圆 的四等分点,动点 从圆心 出发,沿 的路线做匀速运动,当点 运动到圆心 时立即停止,设运动时间为 , 的度数为 度,则下列图象中表示 (度 与 之间的函数关系最恰当的是
A.B.
C.D.
如图,已知点 ,点 在 轴正半轴上的一动点,以 为边作等腰直角三角形 ,使点 在第一象限, ,设点 的横坐标为 ,点 的纵坐标为 ,则表示 与 的函数关系的图象大致是
A.B.
C.D.
如图,点 的坐标为 ,点 是 轴正半轴上的一动点,以 为边作 ,使 , ,设点 的横坐标为 ,点 的纵坐标为 ,能表示 与 的函数关系的图象大致是
A.B.
C.D.
如图,在菱形 中, , ,动点 从点 出发,以每秒1个单位长度的速度沿折线 运动到点 ,同时动点 从点 出发,以相同速度沿折线 运动到点 ,当一个点停止运动时,另一个点也随之停止.设 的面积为 ,运动时间为 秒,则下列图象能大致反映 与 之间函数关系的是
A.B.
C.D.
如图,在矩形 中,点 从点 出发,沿着矩形的边顺时针方向运动一周回到点 ,则点 、 、 围成的图形面积 与点 运动路程 之间形成的函数关系式的大致图象是
A.B.
C.D.
如图,在矩形 中, , .点 从点 出发,以 的速度在矩形的边上沿 运动,点 与点 重合时停止运动.设运动的时间为 (单位: , 的面积为 (单位: ,则 随 变化的函数图象大致为
A. |
|
B. |
|
C. |
|
D. |
|
如图, 为矩形 的对角线,已知 , ,点 沿折线 以每秒1个单位长度的速度运动(运动到 点停止),过点 作 于点 ,则 的面积 与点 运动的路程 间的函数图象大致是
A. |
|
B. |
|
C. |
|
D. |
|
如图1,点 从 的顶点 出发,沿 匀速运动到点 ,图2是点 运动时线段 的长度 随时间 变化的关系图象,其中点 为曲线部分的最低点,则 的边 的长度为
A.12B.8C.10D.13
如图,已知矩形 中, , .动点 在边 上从点 向 运动,速度为 ;同时动点 从点 出发,沿折线 运动,速度为 .当一个点到达终点时,另一个点随之停止运动.设点 运动的时间为 , 的面积为 ,则描述 与时间 的函数关系的图象大致是
A.B.
C.D.
试题篮
()