如图,在矩形 中, , .动点 从点 出发沿折线 向终点 运动,在边 上以 的速度运动;在边 上以 的速度运动,过点 作线段 与射线 相交于点 ,且 ,连接 , .设点 的运动时间为 , 与 重合部分图形的面积为 .
(1)当点 与点 重合时,直接写出 的长;
(2)当点 在边 上运动时,直接写出 的长(用含 的代数式表示);
(3)求 关于 的函数解析式,并写出自变量 的取值范围.
在"看图说故事"活动中,某学习小组结合图象设计了一个问题情境.已知学校、书店、陈列馆依次在同一条直线上,书店离学校 ,陈列馆离学校 .李华从学校出发,匀速骑行 到达书店;在书店停留 后,匀速骑行 到达陈列馆;在陈列馆参观学习一段时间,然后回学校;回学校途中,匀速骑行 后减速,继续匀速骑行回到学校.给出的图象反映了这个过程中李华离学校的距离 与离开学校的时间 之间的对应关系.
请根据相关信息,解答下列问题:
(Ⅰ)填表:
离开学校的时间 |
0.1 |
0.5 |
0.8 |
1 |
3 |
离学校的距离 |
2 |
10 |
|
12 |
|
(Ⅱ)填空:
①书店到陈列馆的距离为 ;
②李华在陈列馆参观学习的时间为 ;
③李华从陈列馆回学校途中,减速前的骑行速度为 ;
④当李华离学校的距离为 时,他离开学校的时间为 .
(Ⅲ)当 时,请直接写出 关于 的函数解析式.
为了节能减排,鼓励居民节约用电,某市出台了新的居民用电收费标准:(1)若每户居民每月用电量不超过100度,则按0.60元 度计算;(2)若每户居民每月用电量超过100度,则超过部分按0.8元 度计算(未超过部分仍按每度电0.60元 度计算),现假设某户居民某月用电量是 (单位:度),电费为 (单位:元),则 与 的函数关系用图象表示正确的是
A.B.
C.D.
某景点试开放期间,团队收费方案如下:不超过30人时,人均收费120元;超过30人且不超过 人时,每增加1人,人均收费降低1元;超过 人时,人均收费都按照 人时的标准.设景点接待有 名游客的某团队,收取总费用为 元.
(1)求 关于 的函数表达式;
(2)景点工作人员发现:当接待某团队人数超过一定数量时,会出现随着人数的增加收取的总费用反而减少这一现象.为了让收取的总费用随着团队中人数的增加而增加,求 的取值范围.
如图,在四边形 中, , , , , .动点 , 同时从点 出发,点 以 的速度沿 向终点 运动,点 以 的速度沿折线 向终点 运动.设点 的运动时间为 , 的面积为 ,则下列图象能大致反映 与 之间函数关系的是
A. |
|
B. |
|
C. |
|
D. |
|
今年是“精准扶贫”攻坚关键年,某扶贫工作队为对口扶贫村引进建立了一村集体企业,并无偿提供一笔无息贷款作为启动资金,双方约定:①企业生产出的产品全部由扶贫工作队及时联系商家收购;②企业从生产销售的利润中,要保证按时发放工人每月最低工资32000元.已知该企业生产的产品成本为20元 件,月生产量 (千件)与出厂价 (元 的函数关系可用图中的线段 和 表示,其中 的解析式为 为常数).
(1)求该企业月生产量 (千件)与出厂价 (元 之间的函数关系式,并写出自变量 的取值范围.
(2)当该企业生产出的产品出厂价定为多少元时,月利润 (元 最大?最大利润是多少? 月利润 (出厂价 成本) 月生产量 工人月最低工资 .
已知函数
(1)画出函数图象;
列表:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
描点,连线得到函数图象:
(2)该函数是否有最大或最小值?若有,求出其值,若没有,简述理由;
(3)设 , , , 是函数图象上的点,若 ,证明: .
对于实数a,b,我们定义符号 的意义为:当 时, ;当 时, ;如: , ,若关于x的函数为 ,则该函数的最小值是( )
A.0B.2C.3D.4
某周日上午 小宇从家出发,乘车1小时到达某活动中心参加实践活动. 时他在活动中心接到爸爸的电话,因急事要求他在 前回到家,他即刻按照来活动中心时的路线,以5千米 小时的平均速度快步返回.同时,爸爸从家沿同一路线开车接他,在距家20千米处接上了小宇,立即保持原来的车速原路返回.设小宇离家 (小时)后,到达离家 (千米)的地方,图中折线 表示 与 之间的函数关系.
(1)活动中心与小宇家相距 千米,小宇在活动中心活动时间为 小时,他从活动中心返家时,步行用了 小时;
(2)求线段 所表示的 (千米)与 (小时)之间的函数关系式(不必写出 所表示的范围);
(3)根据上述情况(不考虑其他因素),请判断小宇是否能在 前回到家,并说明理由.
如图,在等腰直角三角形中,,,于点,点从点出发,沿方向以的速度运动到点停止,在运动过程中,过点作交于点,以线段为边作等腰直角三角形,且(点,位于异侧).设点的运动时间为,与重叠部分的面积为
(1)当点落在上时, ;
(2)当点落在上时, ;
(3)求关于的函数解析式,并写出自变量的取值范围.
甲、乙两个批发店销售同一种苹果,在甲批发店,不论一次购买数量是多少,价格均为6元.在乙批发店,一次购买数量不超过时,价格为7元;一次购买数量超过时,其中有的价格仍为7元,超过部分的价格为5元.设小王在同一个批发店一次购买苹果的数量为.
(Ⅰ)根据题意填表:
一次购买数量 |
30 |
50 |
150 |
|
甲批发店花费元 |
|
300 |
|
|
乙批发店花费元 |
|
350 |
|
(Ⅱ)设在甲批发店花费元,在乙批发店花费元,分别求,关于的函数解析式;
(Ⅲ)根据题意填空:
①若小王在甲批发店和在乙批发店一次购买苹果的数量相同,且花费相同,则他在同一个批发店一次购买苹果的数量为 ;
②若小王在同一个批发店一次购买苹果的数量为,则他在甲、乙两个批发店中的 批发店购买花费少;
③若小王在同一个批发店一次购买苹果花费了360元,则他在甲、乙两个批发店中的 批发店购买数量多.
小强的爸爸从家骑自行车去图书馆借书,途中遇到了从图书馆步行回家的小强,爸爸借完书后迅速回家,途中追上了小强,便用自行车载上小强一起回家,结果爸爸比自己单独骑车回家晚到1分钟,两人与家的距离 (千米)和爸爸从家出发后的时间 (分钟)之间的关系如图所示.
(1)图书馆离家有多少千米?
(2)爸爸和小强第一次相遇时,离家多少千米?
(3)爸爸载上小强后一起回家的速度是多少?
试题篮
()