已知:在平面直角坐标系中,点 为坐标原点,点 在 轴的负半轴上,直线 与 轴、 轴分别交于 、 两点,四边形 为菱形.
(1)如图1,求点 的坐标;
(2)如图2,连接 ,点 为 内一点,连接 、 , 与 交于点 ,且 ,点 在线段 上,点 在线段 上,且 ,连接 、 ,若 ,求 的值;
(3)如图3,在(2)的条件下,当 时,求点 的坐标.
阅读材料:
在平面直角坐标系 中, 点 , 到直线 的距离公式为: .
例如: 求点 到直线 的距离 .
解: 由直线 知, , , ,
点 到直线 的距离为 .
根据以上材料, 解决下列问题:
问题 1 :点 到直线 的距离为 ;
问题 2 :已知: 是以点 为圆心, 1 为半径的圆, 与直线 相切, 求实数 的值;
问题 3 :如图, 设点 为问题 2 中 上的任意一点, 点 , 为直线 上的两点, 且 ,请求出 的最大值和最小值 .
如图,在平面直角坐标系中,直线 与 轴、 轴分别交于点 , ,高为3的等边三角形 ,边 在 轴上,将此三角形沿着 轴的正方向平移,在平移过程中,得到△ ,当点 与原点重合时,解答下列问题:
(1)求出点 的坐标,并判断点 是否在直线 上;
(2)求出边 所在直线的解析式;
(3)在坐标平面内找一点 ,使得以 、 、 、 为顶点的四边形是平行四边形,请直接写出 点坐标.
已知点 , 和直线 ,则点 到直线 的距离证明可用公式 计算.
例如:求点 到直线 的距离.
解:因为直线 ,其中 , .
所以点 到直线 的距离为: .
根据以上材料,解答下列问题:
(1)求点 到直线 的距离;
(2)已知 的圆心 坐标为 ,半径 为2,判断 与直线 的位置关系并说明理由;
(3)已知直线 与 平行,求这两条直线之间的距离.
如图,一次函数 的图象交 轴于点 、交 轴于点 , 的平分线交 轴于点 ,过点 作直线 ,垂足为点 ,交 轴于点 .
(1)求直线 的解析式;
(2)在线段 上有一动点 (不与点 , 重合),过点 分别作 轴, 轴,垂足为点 、 ,是否存在点 ,使线段 的长最小?若存在,请直接写出点 的坐标;若不存在,请说明理由.
如图:一次函数 的图象与坐标轴交于 、 两点,点 是函数 图象上任意一点,过点 作 轴于点 ,连接 .
(1)当 为何值时, 的面积最大?并求出最大值;
(2)当 为等腰三角形时,试确定点 的坐标.
操作:“如图1, 是平面直角坐标系中一点 轴上的点除外),过点 作 轴于点 ,点 绕点 逆时针旋转 得到点 .”我们将此由点 得到点 的操作称为点的 变换.
(1)点 经过 变换后得到的点 的坐标为 ;若点 经过 变换后得到点 ,则点 的坐标为 .
(2) 是函数 图象上异于原点 的任意一点,经过 变换后得到点 .
①求经过点 ,点 的直线的函数表达式;
②如图2,直线 交 轴于点 ,求 的面积与 的面积之比.
阅读理解:
如图①,图形 外一点 与图形 上各点连接的所有线段中,若线段 最短,则线段 的长度称为点 到图形 的距离.
例如:图②中,线段 的长度是点 到线段 的距离;线段 的长度是点 到线段 的距离.
解决问题:
如图③,平面直角坐标系 中,点 、 的坐标分别为 , ,点 从原点 出发,以每秒1个单位长度的速度向 轴正方向运动了 秒.
(1)当 时,求点 到线段 的距离;
(2) 为何值时,点 到线段 的距离为5?
(3) 满足什么条件时,点 到线段 的距离不超过6?(直接写出此小题的结果)
如图,已知一次函数 的图象是直线 ,设直线 分别与 轴、 轴交于点 、 .
(1)求线段 的长度;
(2)设点 在射线 上,将点 绕点 按逆时针方向旋转 到点 ,以点 为圆心, 的长为半径作 .
①当 与 轴相切时,求点 的坐标;
②在①的条件下,设直线 与 轴交于点 ,与 的另一个交点为 ,连接 交 轴于点 ,直线 过点 分别与 轴、直线 交于点 、 ,当 与 相似时,求点 的坐标.
在平面直角坐标系中,直线 交 轴于点 ,交 轴于点 .
(1) 的值是 ;
(2)点 是直线 上的一个动点,点 和点 分别在 轴和 轴上.
①如图,点 为线段 的中点,且四边形 是平行四边形时,求 的周长;
②当 平行于 轴, 平行于 轴时,连接 ,若 的面积为 ,请直接写出点 的坐标.
如图,在平面直角坐标系中,点 的坐标为 .点 的坐标为 ,直线 经过点 和点 ,直线 与直线 相交于点 .
(1)求直线 的表达式和点 的坐标;
(2)矩形 的边 在 轴的正半轴上,点 与点 重合,点 在线段 上,边 平行于 轴,且 , ,将矩形 沿射线 的方向平移,边 始终与 轴平行.已知矩形 以每秒 个单位的速度匀速移动(点 移动到点 时停止移动),设移动时间为 秒 .
①矩形 在移动过程中, 、 、 三点中有且只有一个顶点落在直线 或 上,请直接写出此时 的值;
②若矩形 在移动的过程中,直线 交直线 于点 ,交直线 于点 .当 的面积等于18时,请直接写出此时 的值.
如图,矩形 的顶点 、 分别位于 轴和 轴的正半轴上,线段 、 的长度满足方程 ,直线 分别与 轴、 轴交于 、 两点,将 沿直线 折叠,点 恰好落在直线 上的点 处,且
(1)求点 的坐标;
(2)求直线 的解析式;
(3)将直线 以每秒1个单位长度的速度沿 轴向下平移,求直线 扫过矩形 的面积 关于运动的时间 的函数关系式.
如图,四边形 的顶点坐标分别为 , , , ,当过点 的直线 将四边形 分成面积相等的两部分时,直线 所表示的函数表达式为
A. B. C. D.
如图,以菱形 对角线交点为坐标原点,建立平面直角坐标系, 、 两点的坐标分别为 , 、 ,直线 交 于 ,动点 从点 出发,以每秒2个单位的速度沿着 的路线向终点 匀速运动,设 的面积为 ,点 的运动时间为 秒.
(1)求直线 的解析式;
(2)求 与 之间的函数关系式,并写出自变量 的取值范围;
(3)当 为何值时, ?并求出此时直线 与直线 所夹锐角的正切值.
试题篮
()