阅读理解:
在平面直角坐标系中,点 的坐标为 , ,点 的坐标为 , ,且 , ,若 、 为某矩形的两个顶点,且该矩形的边均与某条坐标轴垂直,则称该矩形为 、 的"相关矩形".如图1中的矩形为点 、 的"相关矩形".
(1)已知点 的坐标为 .
①若点 的坐标为 ,则点 、 的"相关矩形"的周长为 ;
②若点 在直线 上,且点 、 的"相关矩形"为正方形,求直线 的解析式;
(2)已知点 的坐标为 ,点 的坐标为 若使函数 的图象与点 、 的"相关矩形"有两个公共点,直接写出 的取值.
探究函数性质时,我们经历了列表、描点、连线画出函数图象,观察分析图象特征,概括函数性质的过程.结合已有的学习经验,请画出函数 的图象并探究该函数的性质.
x |
… |
﹣4 |
﹣3 |
﹣2 |
﹣1 |
0 |
1 |
2 |
3 |
4 |
… |
y |
… |
|
a |
﹣2 |
﹣4 |
b |
﹣4 |
﹣2 |
|
|
… |
(1)列表,写出表中 , 的值: , ;
描点、连线,在所给的平面直角坐标系中画出该函数的图象.
(2)观察函数图象,判断下列关于函数性质的结论是否正确(在答题卡相应位置正确的用“√”作答,错误的用“×”作答):
①函数 的图象关于y轴对称;
②当 时,函数 有最小值,最小值为 ;
③在自变量的取值范围内函数y的值随自变量x的增大而减小.
(3)已知函数 的图象如图所示,结合你所画的函数图象,直接写出不等式 的解集.
在初中阶段的函数学习中,我们经历了列表、描点、连线画函数图象,并结合图象研究函数性质的过程.以下是我们研究函数 性质及其应用的部分过程,请按要求完成下列各小题.
(1)请把下表补充完整,并在图中补全该函数图象;
|
|
|
|
|
|
|
0 |
1 |
2 |
3 |
4 |
5 |
|
|
|
|
|
|
|
|
0 |
3 |
|
|
|
|
|
(2)根据函数图象,判断下列关于该函数性质的说法是否正确,正确的在答题卡上相应的括号内打“ ”,错误的在答题卡上相应的括号内打“ ”;
①该函数图象是轴对称图形,它的对称轴为 轴.
②该函数在自变量的取值范围内,有最大值和最小值.当 时,函数取得最大值3;当 时,函数取得最小值 .
③当 或 时, 随 的增大而减小;当 时, 随 的增大而增大.
(3)已知函数 的图象如图所示,结合你所画的函数图象,直接写出不等式 的解集(保留1位小数,误差不超过 .
如图,一次函数 的图象与 轴, 轴分别交于 , 两点,过点 作直线 与 垂直,点 在直线 位于 轴上方的部分.
(1)求一次函数 的表达式;
(2)若 的面积为11,求点 的坐标;
(3)当 时,点 的坐标为 .
如图,在平面直角坐标系 中,直线 分别交 轴, 轴于 , 两点,已知点 .
(1)当直线 经过点 时,点 到直线 的距离是 ;
(2)设点 为线段 的中点,连接 , ,若 ,则 的值是 .
如图,已知 的顶点坐标分别为 , , .动点 , 同时从 点出发, 沿 , 沿折线 ,均以每秒1个单位长度的速度移动,当一个动点到达终点 时,另一个动点也随之停止移动,移动的时间记为 秒.连接 .
(1)求直线 的解析式;
(2)移动过程中,将 沿直线 翻折,点 恰好落在 边上点 处,求此时 值及点 的坐标;
(3)当点 , 移动时,记 在直线 右侧部分的面积为 ,求 关于时间 的函数关系式.
小慧根据学习函数的经验,对函数 的图象与性质进行了探究.下面是小慧的探究过程,请补充完成:
(1)函数 的自变量 的取值范围是 ;
(2)列表,找出 与 的几组对应值.
|
|
|
0 |
1 |
2 |
3 |
|
|
|
b |
1 |
0 |
1 |
2 |
|
其中, ;
(3)在平面直角坐标系 中,描出以上表中各对对应值为坐标的点,并画出该函数的图象;
(4)写出该函数的一条性质: .
一次函数 的图象与 轴的负半轴相交于点 ,与 轴的正半轴相交于点 ,且 . 的外接圆的圆心 的横坐标为 .
(1)求一次函数的解析式;
(2)求图中阴影部分的面积.
探究:小明在求同一坐标轴上两点间的距离时发现,对于平面直角坐标系内任意两点 , , , ,可通过构造直角三角形利用图1得到结论: 他还利用图2证明了线段 的中点 的坐标公式: , .
(1)请你帮小明写出中点坐标公式的证明过程;
运用:(2)①已知点 , ,则线段 长度为 ;
②直接写出以点 , , , 为顶点的平行四边形顶点 的坐标: ;
拓展:(3)如图3,点 在函数 的图象 与 轴正半轴夹角的平分线上,请在 、 轴上分别找出点 、 ,使 的周长最小,简要叙述作图方法,并求出周长的最小值.
阅读材料:
在平面直角坐标系 中, 点 , 到直线 的距离公式为: .
例如: 求点 到直线 的距离 .
解: 由直线 知, , , ,
点 到直线 的距离为 .
根据以上材料, 解决下列问题:
问题 1 :点 到直线 的距离为 ;
问题 2 :已知: 是以点 为圆心, 1 为半径的圆, 与直线 相切, 求实数 的值;
问题 3 :如图, 设点 为问题 2 中 上的任意一点, 点 , 为直线 上的两点, 且 ,请求出 的最大值和最小值 .
如图,在平面直角坐标系中,直线 与 轴、 轴分别交于点 , ,高为3的等边三角形 ,边 在 轴上,将此三角形沿着 轴的正方向平移,在平移过程中,得到△ ,当点 与原点重合时,解答下列问题:
(1)求出点 的坐标,并判断点 是否在直线 上;
(2)求出边 所在直线的解析式;
(3)在坐标平面内找一点 ,使得以 、 、 、 为顶点的四边形是平行四边形,请直接写出 点坐标.
已知点 , 和直线 ,则点 到直线 的距离证明可用公式 计算.
例如:求点 到直线 的距离.
解:因为直线 ,其中 , .
所以点 到直线 的距离为: .
根据以上材料,解答下列问题:
(1)求点 到直线 的距离;
(2)已知 的圆心 坐标为 ,半径 为2,判断 与直线 的位置关系并说明理由;
(3)已知直线 与 平行,求这两条直线之间的距离.
如图,一次函数 的图象交 轴于点 、交 轴于点 , 的平分线交 轴于点 ,过点 作直线 ,垂足为点 ,交 轴于点 .
(1)求直线 的解析式;
(2)在线段 上有一动点 (不与点 , 重合),过点 分别作 轴, 轴,垂足为点 、 ,是否存在点 ,使线段 的长最小?若存在,请直接写出点 的坐标;若不存在,请说明理由.
操作:“如图1, 是平面直角坐标系中一点 轴上的点除外),过点 作 轴于点 ,点 绕点 逆时针旋转 得到点 .”我们将此由点 得到点 的操作称为点的 变换.
(1)点 经过 变换后得到的点 的坐标为 ;若点 经过 变换后得到点 ,则点 的坐标为 .
(2) 是函数 图象上异于原点 的任意一点,经过 变换后得到点 .
①求经过点 ,点 的直线的函数表达式;
②如图2,直线 交 轴于点 ,求 的面积与 的面积之比.
试题篮
()