优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 一次函数综合题
初中数学

阅读理解:

在平面直角坐标系中,点 M 的坐标为 ( x 1 y 1 ) ,点 N 的坐标为 ( x 2 y 2 ) ,且 x 1 x 2 y 1 y 2 ,若 M N 为某矩形的两个顶点,且该矩形的边均与某条坐标轴垂直,则称该矩形为 M N 的"相关矩形".如图1中的矩形为点 M N 的"相关矩形".

(1)已知点 A 的坐标为 ( 2 , 0 )

①若点 B 的坐标为 ( 4 , 4 ) ,则点 A B 的"相关矩形"的周长为   

②若点 C 在直线 x = 4 上,且点 A C 的"相关矩形"为正方形,求直线 AC 的解析式;

(2)已知点 P 的坐标为 ( 3 , 4 ) ,点 Q 的坐标为 ( 6 , 2 ) 若使函数 y = k x 的图象与点 P Q 的"相关矩形"有两个公共点,直接写出 k 的取值.

来源:2021年内蒙古赤峰市中考数学试卷
  • 题型:未知
  • 难度:未知

探究函数性质时,我们经历了列表、描点、连线画出函数图象,观察分析图象特征,概括函数性质的过程.结合已有的学习经验,请画出函数 y = - 12 x 2 + 2 的图象并探究该函数的性质.

x

﹣4

﹣3

﹣2

﹣1

0

1

2

3

4

y

- 2 3

a

﹣2

﹣4

b

﹣4

﹣2

- 12 11

- 2 3

(1)列表,写出表中 a b 的值: a   b   

描点、连线,在所给的平面直角坐标系中画出该函数的图象.

(2)观察函数图象,判断下列关于函数性质的结论是否正确(在答题卡相应位置正确的用“√”作答,错误的用“×”作答):

①函数 y = - 12 x 2 + 2 的图象关于y轴对称;

②当 x 0 时,函数 y = - 12 x 2 + 2 有最小值,最小值为 6

③在自变量的取值范围内函数y的值随自变量x的增大而减小.

(3)已知函数 y = - 2 3 x - 10 3 的图象如图所示,结合你所画的函数图象,直接写出不等式 - 12 x 2 + 2 < - 2 3 x - 10 3 的解集.

来源:2020年重庆市中考数学试卷(b卷)
  • 题型:未知
  • 难度:未知

在初中阶段的函数学习中,我们经历了列表、描点、连线画函数图象,并结合图象研究函数性质的过程.以下是我们研究函数 y = 6 x x 2 + 1 性质及其应用的部分过程,请按要求完成下列各小题.

(1)请把下表补充完整,并在图中补全该函数图象;

x

- 5

- 4

- 3

- 2

- 1

0

1

2

3

4

5

y = 6 x x 2 + 1

- 15 13

- 24 17

  

- 12 5

- 3

0

3

12 5

  

24 17

15 13

(2)根据函数图象,判断下列关于该函数性质的说法是否正确,正确的在答题卡上相应的括号内打“ ”,错误的在答题卡上相应的括号内打“ × ”;

①该函数图象是轴对称图形,它的对称轴为 y 轴.

②该函数在自变量的取值范围内,有最大值和最小值.当 x = 1 时,函数取得最大值3;当 x = - 1 时,函数取得最小值 - 3

③当 x < - 1 x > 1 时, y x 的增大而减小;当 - 1 < x < 1 时, y x 的增大而增大.

(3)已知函数 y = 2 x - 1 的图象如图所示,结合你所画的函数图象,直接写出不等式 6 x x 2 + 1 > 2 x - 1 的解集(保留1位小数,误差不超过 0 . 2 )

来源:2020年重庆市中考数学试卷(a卷)
  • 题型:未知
  • 难度:未知

如图,一次函数 y = kx + b ( k 0 ) 的图象与 x 轴, y 轴分别交于 A ( 9 , 0 ) B ( 0 , 6 ) 两点,过点 C ( 2 , 0 ) 作直线 l BC 垂直,点 E 在直线 l 位于 x 轴上方的部分.

(1)求一次函数 y = kx + b ( k 0 ) 的表达式;

(2)若 ΔACE 的面积为11,求点 E 的坐标;

(3)当 CBE = ABO 时,点 E 的坐标为  ( 11 , 3 )  

来源:2018年江苏省镇江市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系 xOy 中,直线 y = x + m 分别交 x 轴, y 轴于 A B 两点,已知点 C ( 2 , 0 )

(1)当直线 AB 经过点 C 时,点 O 到直线 AB 的距离是  

(2)设点 P 为线段 OB 的中点,连接 PA PC ,若 CPA = ABO ,则 m 的值是  

来源:2017年浙江省丽水市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,已知 ΔABC 的顶点坐标分别为 A ( 3 , 0 ) B ( 0 , 4 ) C ( 3 , 0 ) .动点 M N 同时从 A 点出发, M 沿 A C N 沿折线 A B C ,均以每秒1个单位长度的速度移动,当一个动点到达终点 C 时,另一个动点也随之停止移动,移动的时间记为 t 秒.连接 MN

(1)求直线 BC 的解析式;

(2)移动过程中,将 ΔAMN 沿直线 MN 翻折,点 A 恰好落在 BC 边上点 D 处,求此时 t 值及点 D 的坐标;

(3)当点 M N 移动时,记 ΔABC 在直线 MN 右侧部分的面积为 S ,求 S 关于时间 t 的函数关系式.

来源:2018年四川省绵阳市中考数学试卷
  • 题型:未知
  • 难度:未知

小慧根据学习函数的经验,对函数 y = | x - 1 | 的图象与性质进行了探究.下面是小慧的探究过程,请补充完成:

(1)函数 y = | x - 1 | 的自变量 x 的取值范围是           

(2)列表,找出 y x 的几组对应值.

x

- 1

0

1

2

3

y

b

1

0

1

2

其中, b =       

(3)在平面直角坐标系 xOy 中,描出以上表中各对对应值为坐标的点,并画出该函数的图象;

(4)写出该函数的一条性质:      

来源:2017年湖北省咸宁市中考数学试卷
  • 题型:未知
  • 难度:未知

一次函数 y = kx + b 的图象与 x 轴的负半轴相交于点 A ,与 y 轴的正半轴相交于点 B ,且 sin ABO = 3 2 ΔOAB 的外接圆的圆心 M 的横坐标为 - 3

(1)求一次函数的解析式;

(2)求图中阴影部分的面积.

来源:2019年江苏省无锡市中考数学试卷
  • 题型:未知
  • 难度:未知

探究:小明在求同一坐标轴上两点间的距离时发现,对于平面直角坐标系内任意两点 P 1 ( x 1 y 1 ) P 2 ( x 2 y 2 ) ,可通过构造直角三角形利用图1得到结论: P 1 P 2 = ( x 2 x 1 ) 2 + ( y 2 y 1 ) 2 他还利用图2证明了线段 P 1 P 2 的中点 P ( x , y ) P 的坐标公式: x = x 1 + x 2 2 y = y 1 + y 2 2

(1)请你帮小明写出中点坐标公式的证明过程;

运用:(2)①已知点 M ( 2 , 1 ) N ( 3 , 5 ) ,则线段 MN 长度为  

②直接写出以点 A ( 2 , 2 ) B ( 2 , 0 ) C ( 3 , 1 ) D 为顶点的平行四边形顶点 D 的坐标:  

拓展:(3)如图3,点 P ( 2 , n ) 在函数 y = 4 3 x ( x 0 ) 的图象 OL x 轴正半轴夹角的平分线上,请在 OL x 轴上分别找出点 E F ,使 ΔPEF 的周长最小,简要叙述作图方法,并求出周长的最小值.

来源:2017年四川省达州市中考数学试卷
  • 题型:未知
  • 难度:未知

阅读材料:

在平面直角坐标系 xOy 中, 点 P ( x 0 y 0 ) 到直线 Ax + By + C = 0 的距离公式为: d = | A x 0 + B y 0 + C | A 2 + B 2

例如: 求点 P 0 ( 0 , 0 ) 到直线 4 x + 3 y 3 = 0 的距离 .

解: 由直线 4 x + 3 y 3 = 0 知, A = 4 B = 3 C = 3

P 0 ( 0 , 0 ) 到直线 4 x + 3 y 3 = 0 的距离为 d = | 4 × 0 + 3 × 0 3 | 4 2 + 3 2 = 3 5

根据以上材料, 解决下列问题:

问题 1 :点 P 1 ( 3 , 4 ) 到直线 y = 3 4 x + 5 4 的距离为  

问题 2 :已知: C 是以点 C ( 2 , 1 ) 为圆心, 1 为半径的圆, C 与直线 y = 3 4 x + b 相切, 求实数 b 的值;

问题 3 :如图, 设点 P 为问题 2 中 C 上的任意一点, 点 A B 为直线 3 x + 4 y + 5 = 0 上的两点, 且 AB = 2 ,请求出 S ΔABP 的最大值和最小值 .

来源:2017年山东省日照市中考数学试卷(已修)
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,直线 l : y = 3 3 x + 4 x 轴、 y 轴分别交于点 M N ,高为3的等边三角形 ABC ,边 BC x 轴上,将此三角形沿着 x 轴的正方向平移,在平移过程中,得到△ A 1 B 1 C 1 ,当点 B 1 与原点重合时,解答下列问题:

(1)求出点 A 1 的坐标,并判断点 A 1 是否在直线 l 上;

(2)求出边 A 1 C 1 所在直线的解析式;

(3)在坐标平面内找一点 P ,使得以 P A 1 C 1 M 为顶点的四边形是平行四边形,请直接写出 P 点坐标.

来源:2017年辽宁省盘锦市中考数学试卷
  • 题型:未知
  • 难度:未知

已知点 P ( x 0 y 0 ) 和直线 y = kx + b ,则点 P 到直线 y = kx + b 的距离证明可用公式 d = | k x 0 - y 0 + b | 1 + k 2 计算.

例如:求点 P ( - 1 , 2 ) 到直线 y = 3 x + 7 的距离.

解:因为直线 y = 3 x + 7 ,其中 k = 3 b = 7

所以点 P ( - 1 , 2 ) 到直线 y = 3 x + 7 的距离为: d = | k x 0 - y 0 + b | 1 + k 2 = | 3 × ( - 1 ) - 2 + 7 | 1 + 3 2 = 2 10 = 10 5

根据以上材料,解答下列问题:

(1)求点 P ( 1 , - 1 ) 到直线 y = x - 1 的距离;

(2)已知 Q 的圆心 Q 坐标为 ( 0 , 5 ) ,半径 r 为2,判断 Q 与直线 y = 3 x + 9 的位置关系并说明理由;

(3)已知直线 y = - 2 x + 4 y = - 2 x - 6 平行,求这两条直线之间的距离.

来源:2016年山东省济宁市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,一次函数 y = 3 4 x + 6 的图象交 x 轴于点 A 、交 y 轴于点 B ABO 的平分线交 x 轴于点 C ,过点 C 作直线 CD AB ,垂足为点 D ,交 y 轴于点 E

(1)求直线 CE 的解析式;

(2)在线段 AB 上有一动点 P (不与点 A B 重合),过点 P 分别作 PM x 轴, PN y 轴,垂足为点 M N ,是否存在点 P ,使线段 MN 的长最小?若存在,请直接写出点 P 的坐标;若不存在,请说明理由.

来源:2017年辽宁省鞍山市中考数学试卷
  • 题型:未知
  • 难度:未知

操作:“如图1, P 是平面直角坐标系中一点 ( x 轴上的点除外),过点 P PC x 轴于点 C ,点 C 绕点 P 逆时针旋转 60 ° 得到点 Q .”我们将此由点 P 得到点 Q 的操作称为点的 T 变换.

(1)点 P ( a , b ) 经过 T 变换后得到的点 Q 的坐标为   ;若点 M 经过 T 变换后得到点 N ( 6 , - 3 ) ,则点 M 的坐标为       

(2) A 是函数 y = 3 2 x 图象上异于原点 O 的任意一点,经过 T 变换后得到点 B

①求经过点 O ,点 B 的直线的函数表达式;

②如图2,直线 AB y 轴于点 D ,求 ΔOAB 的面积与 ΔOAD 的面积之比.

来源:2017年江苏省无锡市中考数学试卷
  • 题型:未知
  • 难度:未知

阅读理解:

如图①,图形 l 外一点 P 与图形 l 上各点连接的所有线段中,若线段 P A 1 最短,则线段 P A 1 的长度称为点 P 到图形 l 的距离.

例如:图②中,线段 P 1 A 的长度是点 P 1 到线段 AB 的距离;线段 P 2 H 的长度是点 P 2 到线段 AB 的距离.

解决问题:

如图③,平面直角坐标系 xOy 中,点 A B 的坐标分别为 ( 8 , 4 ) ( 12 , 7 ) ,点 P 从原点 O 出发,以每秒1个单位长度的速度向 x 轴正方向运动了 t 秒.

(1)当 t = 4 时,求点 P 到线段 AB 的距离;

(2) t 为何值时,点 P 到线段 AB 的距离为5?

(3) t 满足什么条件时,点 P 到线段 AB 的距离不超过6?(直接写出此小题的结果)

来源:2017年江苏省泰州市中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学一次函数综合题试题