优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 一次函数综合题 / 解答题
初中数学

阅读理解:

在平面直角坐标系中,点 M 的坐标为 ( x 1 y 1 ) ,点 N 的坐标为 ( x 2 y 2 ) ,且 x 1 x 2 y 1 y 2 ,若 M N 为某矩形的两个顶点,且该矩形的边均与某条坐标轴垂直,则称该矩形为 M N 的"相关矩形".如图1中的矩形为点 M N 的"相关矩形".

(1)已知点 A 的坐标为 ( 2 , 0 )

①若点 B 的坐标为 ( 4 , 4 ) ,则点 A B 的"相关矩形"的周长为   

②若点 C 在直线 x = 4 上,且点 A C 的"相关矩形"为正方形,求直线 AC 的解析式;

(2)已知点 P 的坐标为 ( 3 , 4 ) ,点 Q 的坐标为 ( 6 , 2 ) 若使函数 y = k x 的图象与点 P Q 的"相关矩形"有两个公共点,直接写出 k 的取值.

来源:2021年内蒙古赤峰市中考数学试卷
  • 题型:未知
  • 难度:未知

探究函数性质时,我们经历了列表、描点、连线画出函数图象,观察分析图象特征,概括函数性质的过程.结合已有的学习经验,请画出函数 y = - 12 x 2 + 2 的图象并探究该函数的性质.

x

﹣4

﹣3

﹣2

﹣1

0

1

2

3

4

y

- 2 3

a

﹣2

﹣4

b

﹣4

﹣2

- 12 11

- 2 3

(1)列表,写出表中 a b 的值: a   b   

描点、连线,在所给的平面直角坐标系中画出该函数的图象.

(2)观察函数图象,判断下列关于函数性质的结论是否正确(在答题卡相应位置正确的用“√”作答,错误的用“×”作答):

①函数 y = - 12 x 2 + 2 的图象关于y轴对称;

②当 x 0 时,函数 y = - 12 x 2 + 2 有最小值,最小值为 6

③在自变量的取值范围内函数y的值随自变量x的增大而减小.

(3)已知函数 y = - 2 3 x - 10 3 的图象如图所示,结合你所画的函数图象,直接写出不等式 - 12 x 2 + 2 < - 2 3 x - 10 3 的解集.

来源:2020年重庆市中考数学试卷(b卷)
  • 题型:未知
  • 难度:未知

在初中阶段的函数学习中,我们经历了列表、描点、连线画函数图象,并结合图象研究函数性质的过程.以下是我们研究函数 y = 6 x x 2 + 1 性质及其应用的部分过程,请按要求完成下列各小题.

(1)请把下表补充完整,并在图中补全该函数图象;

x

- 5

- 4

- 3

- 2

- 1

0

1

2

3

4

5

y = 6 x x 2 + 1

- 15 13

- 24 17

  

- 12 5

- 3

0

3

12 5

  

24 17

15 13

(2)根据函数图象,判断下列关于该函数性质的说法是否正确,正确的在答题卡上相应的括号内打“ ”,错误的在答题卡上相应的括号内打“ × ”;

①该函数图象是轴对称图形,它的对称轴为 y 轴.

②该函数在自变量的取值范围内,有最大值和最小值.当 x = 1 时,函数取得最大值3;当 x = - 1 时,函数取得最小值 - 3

③当 x < - 1 x > 1 时, y x 的增大而减小;当 - 1 < x < 1 时, y x 的增大而增大.

(3)已知函数 y = 2 x - 1 的图象如图所示,结合你所画的函数图象,直接写出不等式 6 x x 2 + 1 > 2 x - 1 的解集(保留1位小数,误差不超过 0 . 2 )

来源:2020年重庆市中考数学试卷(a卷)
  • 题型:未知
  • 难度:未知

如图,一次函数 y = kx + b ( k 0 ) 的图象与 x 轴, y 轴分别交于 A ( 9 , 0 ) B ( 0 , 6 ) 两点,过点 C ( 2 , 0 ) 作直线 l BC 垂直,点 E 在直线 l 位于 x 轴上方的部分.

(1)求一次函数 y = kx + b ( k 0 ) 的表达式;

(2)若 ΔACE 的面积为11,求点 E 的坐标;

(3)当 CBE = ABO 时,点 E 的坐标为  ( 11 , 3 )  

来源:2018年江苏省镇江市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,已知 ΔABC 的顶点坐标分别为 A ( 3 , 0 ) B ( 0 , 4 ) C ( 3 , 0 ) .动点 M N 同时从 A 点出发, M 沿 A C N 沿折线 A B C ,均以每秒1个单位长度的速度移动,当一个动点到达终点 C 时,另一个动点也随之停止移动,移动的时间记为 t 秒.连接 MN

(1)求直线 BC 的解析式;

(2)移动过程中,将 ΔAMN 沿直线 MN 翻折,点 A 恰好落在 BC 边上点 D 处,求此时 t 值及点 D 的坐标;

(3)当点 M N 移动时,记 ΔABC 在直线 MN 右侧部分的面积为 S ,求 S 关于时间 t 的函数关系式.

来源:2018年四川省绵阳市中考数学试卷
  • 题型:未知
  • 难度:未知

探究:小明在求同一坐标轴上两点间的距离时发现,对于平面直角坐标系内任意两点 P 1 ( x 1 y 1 ) P 2 ( x 2 y 2 ) ,可通过构造直角三角形利用图1得到结论: P 1 P 2 = ( x 2 x 1 ) 2 + ( y 2 y 1 ) 2 他还利用图2证明了线段 P 1 P 2 的中点 P ( x , y ) P 的坐标公式: x = x 1 + x 2 2 y = y 1 + y 2 2

(1)请你帮小明写出中点坐标公式的证明过程;

运用:(2)①已知点 M ( 2 , 1 ) N ( 3 , 5 ) ,则线段 MN 长度为  

②直接写出以点 A ( 2 , 2 ) B ( 2 , 0 ) C ( 3 , 1 ) D 为顶点的平行四边形顶点 D 的坐标:  

拓展:(3)如图3,点 P ( 2 , n ) 在函数 y = 4 3 x ( x 0 ) 的图象 OL x 轴正半轴夹角的平分线上,请在 OL x 轴上分别找出点 E F ,使 ΔPEF 的周长最小,简要叙述作图方法,并求出周长的最小值.

来源:2017年四川省达州市中考数学试卷
  • 题型:未知
  • 难度:未知

阅读材料:

在平面直角坐标系 xOy 中, 点 P ( x 0 y 0 ) 到直线 Ax + By + C = 0 的距离公式为: d = | A x 0 + B y 0 + C | A 2 + B 2

例如: 求点 P 0 ( 0 , 0 ) 到直线 4 x + 3 y 3 = 0 的距离 .

解: 由直线 4 x + 3 y 3 = 0 知, A = 4 B = 3 C = 3

P 0 ( 0 , 0 ) 到直线 4 x + 3 y 3 = 0 的距离为 d = | 4 × 0 + 3 × 0 3 | 4 2 + 3 2 = 3 5

根据以上材料, 解决下列问题:

问题 1 :点 P 1 ( 3 , 4 ) 到直线 y = 3 4 x + 5 4 的距离为  

问题 2 :已知: C 是以点 C ( 2 , 1 ) 为圆心, 1 为半径的圆, C 与直线 y = 3 4 x + b 相切, 求实数 b 的值;

问题 3 :如图, 设点 P 为问题 2 中 C 上的任意一点, 点 A B 为直线 3 x + 4 y + 5 = 0 上的两点, 且 AB = 2 ,请求出 S ΔABP 的最大值和最小值 .

来源:2017年山东省日照市中考数学试卷(已修)
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,直线 l : y = 3 3 x + 4 x 轴、 y 轴分别交于点 M N ,高为3的等边三角形 ABC ,边 BC x 轴上,将此三角形沿着 x 轴的正方向平移,在平移过程中,得到△ A 1 B 1 C 1 ,当点 B 1 与原点重合时,解答下列问题:

(1)求出点 A 1 的坐标,并判断点 A 1 是否在直线 l 上;

(2)求出边 A 1 C 1 所在直线的解析式;

(3)在坐标平面内找一点 P ,使得以 P A 1 C 1 M 为顶点的四边形是平行四边形,请直接写出 P 点坐标.

来源:2017年辽宁省盘锦市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,一次函数 y = 3 4 x + 6 的图象交 x 轴于点 A 、交 y 轴于点 B ABO 的平分线交 x 轴于点 C ,过点 C 作直线 CD AB ,垂足为点 D ,交 y 轴于点 E

(1)求直线 CE 的解析式;

(2)在线段 AB 上有一动点 P (不与点 A B 重合),过点 P 分别作 PM x 轴, PN y 轴,垂足为点 M N ,是否存在点 P ,使线段 MN 的长最小?若存在,请直接写出点 P 的坐标;若不存在,请说明理由.

来源:2017年辽宁省鞍山市中考数学试卷
  • 题型:未知
  • 难度:未知

在平面直角坐标系中,直线 y = kx + 4 ( k 0 ) x 轴于点 A ( 8 , 0 ) ,交 y 轴于点 B

(1) k 的值是  

(2)点 C 是直线 AB 上的一个动点,点 D 和点 E 分别在 x 轴和 y 轴上.

①如图,点 E 为线段 OB 的中点,且四边形 OCED 是平行四边形时,求 OCED 的周长;

②当 CE 平行于 x 轴, CD 平行于 y 轴时,连接 DE ,若 ΔCDE 的面积为 33 4 ,请直接写出点 C 的坐标.

来源:2019年辽宁省沈阳市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,点 F 的坐标为 ( 0 , 10 ) .点 E 的坐标为 ( 20 , 0 ) ,直线 l 1 经过点 F 和点 E ,直线 l 1 与直线 l 2 : y = 3 4 x 相交于点 P

(1)求直线 l 1 的表达式和点 P 的坐标;

(2)矩形 ABCD 的边 AB y 轴的正半轴上,点 A 与点 F 重合,点 B 在线段 OF 上,边 AD 平行于 x 轴,且 AB = 6 AD = 9 ,将矩形 ABCD 沿射线 FE 的方向平移,边 AD 始终与 x 轴平行.已知矩形 ABCD 以每秒 5 个单位的速度匀速移动(点 A 移动到点 E 时停止移动),设移动时间为 t ( t > 0 )

①矩形 ABCD 在移动过程中, B C D 三点中有且只有一个顶点落在直线 l 1 l 2 上,请直接写出此时 t 的值;

②若矩形 ABCD 在移动的过程中,直线 CD 交直线 l 1 于点 N ,交直线 l 2 于点 M .当 ΔPMN 的面积等于18时,请直接写出此时 t 的值.

来源:2018年辽宁省沈阳市中考数学试卷
  • 题型:未知
  • 难度:未知

阅读下面材料:

我们知道一次函数 ykx+ bk≠0, kb是常数)的图象是一条直线,到高中学习时,直线通常写成 Ax+ By+ C=0( A≠0, ABC是常数)的形式,点 Px 0y 0)到直线 Ax+ By+ C=0的距离可用公式 d A x 0 + B y 0 + C A 2 + B 2 计算.

例如:求点 P(3,4)到直线 y=﹣2 x+5的距离.

解:∵ y=﹣2 x+5

∴2 x+ y﹣5=0,其中 A=2, B=1, C=﹣5

∴点 P(3,4)到直线 y=﹣2 x+5的距离为:

d = A x 0 + B y 0 + C A 2 + B 2 = | 2 × 3 + 1 × 4 - 5 | 2 2 + 1 2 = 5 5 = 5

根据以上材料解答下列问题:

(1)求点 Q(﹣2,2)到直线3 xy+7=0的距离;

(2)如图,直线 y=﹣ x沿 y轴向上平移2个单位得到另一条直线,求这两条平行直线之间的距离.

来源:2019年内蒙古赤峰市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系 xOy中,直线 y=﹣ x+3与 x轴交于点 C,与直线 AD交于点 A 4 3 , 5 3 ,点 D的坐标为(0,1)

(1)求直线 AD的解析式;

(2)直线 ADx轴交于点 B,若点 E是直线 AD上一动点(不与点 B重合),当△ BOD与△ BCE相似时,求点 E的坐标.

来源:2016年广东省广州市中考数学试卷
  • 题型:未知
  • 难度:未知

定义:在平面直角坐标系中,对于任意两点,若点满足那么称点是点的融合点.

例如:,当点满足时,则点是点的融合点.

(1)已知点,请说明其中一个点是另外两个点的融合点.

(2)如图,点,点是直线上任意一点,点是点的融合点.

①试确定的关系式.

②若直线轴于点.当为直角三角形时,求点的坐标.

来源:2019年浙江省衢州市中考数学试卷
  • 题型:未知
  • 难度:未知

函数图象在探索函数的性质中有非常重要的作用,下面我们就一类特殊的函数展开探索.画函数的图象,经历分析解析式、列表、描点、连线过程得到函数图象如图所示;经历同样的过程画函数的图象如图所示.

0

1

2

3

0

(1)观察发现:三个函数的图象都是由两条射线组成的轴对称图形;三个函数解析式中绝对值前面的系数相同,则图象的开口方向和形状完全相同,只有最高点和对称轴发生了变化.写出点的坐标和函数的对称轴.

(2)探索思考:平移函数的图象可以得到函数的图象,分别写出平移的方向和距离.

(3)拓展应用:在所给的平面直角坐标系内画出函数的图象.若点在该函数图象上,且,比较的大小.

来源:2019年重庆市中考数学试卷(b卷)
  • 题型:未知
  • 难度:未知

初中数学一次函数综合题解答题