阅读理解:
在平面直角坐标系中,点 的坐标为 , ,点 的坐标为 , ,且 , ,若 、 为某矩形的两个顶点,且该矩形的边均与某条坐标轴垂直,则称该矩形为 、 的"相关矩形".如图1中的矩形为点 、 的"相关矩形".
(1)已知点 的坐标为 .
①若点 的坐标为 ,则点 、 的"相关矩形"的周长为 ;
②若点 在直线 上,且点 、 的"相关矩形"为正方形,求直线 的解析式;
(2)已知点 的坐标为 ,点 的坐标为 若使函数 的图象与点 、 的"相关矩形"有两个公共点,直接写出 的取值.
探究函数性质时,我们经历了列表、描点、连线画出函数图象,观察分析图象特征,概括函数性质的过程.结合已有的学习经验,请画出函数 的图象并探究该函数的性质.
x |
… |
﹣4 |
﹣3 |
﹣2 |
﹣1 |
0 |
1 |
2 |
3 |
4 |
… |
y |
… |
|
a |
﹣2 |
﹣4 |
b |
﹣4 |
﹣2 |
|
|
… |
(1)列表,写出表中 , 的值: , ;
描点、连线,在所给的平面直角坐标系中画出该函数的图象.
(2)观察函数图象,判断下列关于函数性质的结论是否正确(在答题卡相应位置正确的用“√”作答,错误的用“×”作答):
①函数 的图象关于y轴对称;
②当 时,函数 有最小值,最小值为 ;
③在自变量的取值范围内函数y的值随自变量x的增大而减小.
(3)已知函数 的图象如图所示,结合你所画的函数图象,直接写出不等式 的解集.
在初中阶段的函数学习中,我们经历了列表、描点、连线画函数图象,并结合图象研究函数性质的过程.以下是我们研究函数 性质及其应用的部分过程,请按要求完成下列各小题.
(1)请把下表补充完整,并在图中补全该函数图象;
|
|
|
|
|
|
|
0 |
1 |
2 |
3 |
4 |
5 |
|
|
|
|
|
|
|
|
0 |
3 |
|
|
|
|
|
(2)根据函数图象,判断下列关于该函数性质的说法是否正确,正确的在答题卡上相应的括号内打“ ”,错误的在答题卡上相应的括号内打“ ”;
①该函数图象是轴对称图形,它的对称轴为 轴.
②该函数在自变量的取值范围内,有最大值和最小值.当 时,函数取得最大值3;当 时,函数取得最小值 .
③当 或 时, 随 的增大而减小;当 时, 随 的增大而增大.
(3)已知函数 的图象如图所示,结合你所画的函数图象,直接写出不等式 的解集(保留1位小数,误差不超过 .
如图,一次函数 的图象与 轴, 轴分别交于 , 两点,过点 作直线 与 垂直,点 在直线 位于 轴上方的部分.
(1)求一次函数 的表达式;
(2)若 的面积为11,求点 的坐标;
(3)当 时,点 的坐标为 .
如图,已知 的顶点坐标分别为 , , .动点 , 同时从 点出发, 沿 , 沿折线 ,均以每秒1个单位长度的速度移动,当一个动点到达终点 时,另一个动点也随之停止移动,移动的时间记为 秒.连接 .
(1)求直线 的解析式;
(2)移动过程中,将 沿直线 翻折,点 恰好落在 边上点 处,求此时 值及点 的坐标;
(3)当点 , 移动时,记 在直线 右侧部分的面积为 ,求 关于时间 的函数关系式.
探究:小明在求同一坐标轴上两点间的距离时发现,对于平面直角坐标系内任意两点 , , , ,可通过构造直角三角形利用图1得到结论: 他还利用图2证明了线段 的中点 的坐标公式: , .
(1)请你帮小明写出中点坐标公式的证明过程;
运用:(2)①已知点 , ,则线段 长度为 ;
②直接写出以点 , , , 为顶点的平行四边形顶点 的坐标: ;
拓展:(3)如图3,点 在函数 的图象 与 轴正半轴夹角的平分线上,请在 、 轴上分别找出点 、 ,使 的周长最小,简要叙述作图方法,并求出周长的最小值.
阅读材料:
在平面直角坐标系 中, 点 , 到直线 的距离公式为: .
例如: 求点 到直线 的距离 .
解: 由直线 知, , , ,
点 到直线 的距离为 .
根据以上材料, 解决下列问题:
问题 1 :点 到直线 的距离为 ;
问题 2 :已知: 是以点 为圆心, 1 为半径的圆, 与直线 相切, 求实数 的值;
问题 3 :如图, 设点 为问题 2 中 上的任意一点, 点 , 为直线 上的两点, 且 ,请求出 的最大值和最小值 .
如图,在平面直角坐标系中,直线 与 轴、 轴分别交于点 , ,高为3的等边三角形 ,边 在 轴上,将此三角形沿着 轴的正方向平移,在平移过程中,得到△ ,当点 与原点重合时,解答下列问题:
(1)求出点 的坐标,并判断点 是否在直线 上;
(2)求出边 所在直线的解析式;
(3)在坐标平面内找一点 ,使得以 、 、 、 为顶点的四边形是平行四边形,请直接写出 点坐标.
如图,一次函数 的图象交 轴于点 、交 轴于点 , 的平分线交 轴于点 ,过点 作直线 ,垂足为点 ,交 轴于点 .
(1)求直线 的解析式;
(2)在线段 上有一动点 (不与点 , 重合),过点 分别作 轴, 轴,垂足为点 、 ,是否存在点 ,使线段 的长最小?若存在,请直接写出点 的坐标;若不存在,请说明理由.
在平面直角坐标系中,直线 交 轴于点 ,交 轴于点 .
(1) 的值是 ;
(2)点 是直线 上的一个动点,点 和点 分别在 轴和 轴上.
①如图,点 为线段 的中点,且四边形 是平行四边形时,求 的周长;
②当 平行于 轴, 平行于 轴时,连接 ,若 的面积为 ,请直接写出点 的坐标.
如图,在平面直角坐标系中,点 的坐标为 .点 的坐标为 ,直线 经过点 和点 ,直线 与直线 相交于点 .
(1)求直线 的表达式和点 的坐标;
(2)矩形 的边 在 轴的正半轴上,点 与点 重合,点 在线段 上,边 平行于 轴,且 , ,将矩形 沿射线 的方向平移,边 始终与 轴平行.已知矩形 以每秒 个单位的速度匀速移动(点 移动到点 时停止移动),设移动时间为 秒 .
①矩形 在移动过程中, 、 、 三点中有且只有一个顶点落在直线 或 上,请直接写出此时 的值;
②若矩形 在移动的过程中,直线 交直线 于点 ,交直线 于点 .当 的面积等于18时,请直接写出此时 的值.
阅读下面材料:
我们知道一次函数 y= kx+ b( k≠0, k、 b是常数)的图象是一条直线,到高中学习时,直线通常写成 Ax+ By+ C=0( A≠0, A、 B、 C是常数)的形式,点 P( x 0, y 0)到直线 Ax+ By+ C=0的距离可用公式 d= 计算.
例如:求点 P(3,4)到直线 y=﹣2 x+5的距离.
解:∵ y=﹣2 x+5
∴2 x+ y﹣5=0,其中 A=2, B=1, C=﹣5
∴点 P(3,4)到直线 y=﹣2 x+5的距离为:
根据以上材料解答下列问题:
(1)求点 Q(﹣2,2)到直线3 x﹣ y+7=0的距离;
(2)如图,直线 y=﹣ x沿 y轴向上平移2个单位得到另一条直线,求这两条平行直线之间的距离.
如图,在平面直角坐标系 xOy中,直线 y=﹣ x+3与 x轴交于点 C,与直线 AD交于点 ,点 D的坐标为(0,1)
(1)求直线 AD的解析式;
(2)直线 AD与 x轴交于点 B,若点 E是直线 AD上一动点(不与点 B重合),当△ BOD与△ BCE相似时,求点 E的坐标.
定义:在平面直角坐标系中,对于任意两点,,若点满足,那么称点是点,的融合点.
例如:,,当点满足,时,则点是点,的融合点.
(1)已知点,,,请说明其中一个点是另外两个点的融合点.
(2)如图,点,点是直线上任意一点,点是点,的融合点.
①试确定与的关系式.
②若直线交轴于点.当为直角三角形时,求点的坐标.
函数图象在探索函数的性质中有非常重要的作用,下面我们就一类特殊的函数展开探索.画函数的图象,经历分析解析式、列表、描点、连线过程得到函数图象如图所示;经历同样的过程画函数和的图象如图所示.
0 |
1 |
2 |
3 |
||||||
0 |
(1)观察发现:三个函数的图象都是由两条射线组成的轴对称图形;三个函数解析式中绝对值前面的系数相同,则图象的开口方向和形状完全相同,只有最高点和对称轴发生了变化.写出点,的坐标和函数的对称轴.
(2)探索思考:平移函数的图象可以得到函数和的图象,分别写出平移的方向和距离.
(3)拓展应用:在所给的平面直角坐标系内画出函数的图象.若点,和,在该函数图象上,且,比较,的大小.
试题篮
()