)已知正比例函数 与反比例函数 的图象都经过点 .
(1)求 , 的值;
(2)在图中画出正比例函数 的图象,并根据图象,写出正比例函数值大于反比例函数值时 的取值范围.
如图,菱形 的边 在 轴上,点 的坐标为 ,点 在反比例函数 的图象上,直线 经过点 ,与 轴交于点 ,连接 , .
(1)求 , 的值;
(2)求 的面积.
如图,在平面直角坐标系中, 的斜边 在 轴的正半轴上, ,且 , ,反比例函数 的图象经过点 .
(1)求反比例函数的表达式;
(2)若 与 关于直线 对称,一次函数 的图象过点 、 ,求一次函数的表达式.
如图,直线 与反比例函数 的图象交于 , 两点,过 作 轴于点 ,过 作 轴于点 ,
(1)求 , 的值及反比例函数的解析式;
(2)请问:在直线 上是否存在点 ,使得 ?若存在,求出点 的坐标;若不存在,请说明理由.
如图,一次函数 的图象与坐标轴分别交于 、 两点,与反比例函数 的图象在第一象限的交点为 , 轴,垂足为 ,若 , , 的面积为3.
(1)求一次函数与反比例函数的解析式;
(2)直接写出当 时, 的解集.
如图,已知反比例函数 的图象与一次函数 的图象在第一象限交于 , 两点
(1)求反比例函数和一次函数的表达式;
(2)已知点 , ,过点 作平行于 轴的直线,在第一象限内交一次函数 的图象于点 ,交反比例函数 上的图象于点 .若 ,结合函数图象直接写出 的取值范围.
如图1, 的边 在 轴的正半轴上, , ,反比例函数 的图象经过的 .
(1)求点 的坐标和反比例函数的关系式;
(2)如图2,直线 分别与 轴、 轴的正半轴交于 , 两点,若点 和点 关于直线 成轴对称,求线段 的长;
(3)如图3,将线段 延长交 的图象于点 ,过 , 的直线分别交 轴、 轴于 , 两点,请探究线段 与 的数量关系,并说明理由.
如图所示,在平面直角坐标系中,直线 与 轴相交于点 与反比例函数 在第一象限内相交于点
(1)求反比例函数的解析式;
(2)将直线 向上平行移动后与反比例函数在第一象限内相交于点 ,且 的面积为4,求平行移动后的直线的解析式.
如图,在平面直角坐标系中,一次函数 的图象与反比例函数 的图象交于 、 两点,与 轴交于点 .
(1)求 , 的值;
(2)请直接写出不等式 的解集;
(3)将 轴下方的图象沿 轴翻折,点 落在点 处,连接 , ,求△ 的面积.
如图,反比例函数 与一次函数 的图象交于点 、 , .
(1)求这两个函数解析式;
(2)将一次函数 的图象沿 轴向下平移 个单位,使平移后的图象与反比例函数 的图象有且只有一个交点,求 的值.
如图,一次函数 与反比例函数 的图象相交于 、 两点,一次函数的图象与 轴相交于点 ,已知点
(1)求反比例函数的解析式;
(2)连接 是坐标原点),若 的面积为3,求该一次函数的解析式.
已知直线 与 轴交于点 ,与 轴交于点 ,且与双曲线 交于点 .
(1)试确定双曲线的函数表达式;
(2)将 沿 轴翻折后,得到 ,画出 的图象,并求出 的函数表达式;
(3)在(2)的条件下,点 是线段 上点(不包括端点),过点 作 轴的平行线,分别交 于点 ,交双曲线于点 ,求 的取值范围.
已知反比例函数 的图象经过点 .
(1)求该反比例函数的表达式;
(2)如图,在反比例函数 的图象上点 的右侧取点 ,过点 作 轴的垂线交 轴于点 ,过点 作 轴的垂线交直线 于点 .
①过点 ,点 分别作 轴, 轴的垂线,两线相交于点 ,求证: , , 三点共线;
②若 ,求证: .
如图,一次函数 的图象与反比例函数 的图象交于 A(﹣1, n), B(3,﹣2)两点.
(1)求一次函数和反比例函数的解析式;
(2)点 P在 x轴上,且满足△ ABP的面积等于4,请直接写出点 P的坐标.
试题篮
()