已知二次函数 , , 是常数, 的 与 的部分对应值如下表:
|
|
|
|
|
0 |
2 |
|
|
6 |
0 |
|
|
6 |
下列结论:
① ;
②当 时,函数最小值为 ;
③若点 ,点 在二次函数图象上,则 ;
④方程 有两个不相等的实数根.
其中,正确结论的序号是 .(把所有正确结论的序号都填上)
已知抛物线 y= a( x﹣1) 2+3( a≠0)与 y轴交于点 A(0,2),顶点为 B,且对称轴 l 1与 x轴交于点 M
(1)求 a的值,并写出点 B的坐标;
(2)有一个动点 P从原点 O出发,沿 x轴正方向以每秒2个单位的速度运动,设运动时间为 t秒,求 t为何值时 PA+ PB最短;
(3)将此抛物线向右平移所得新的抛物线与原抛物线交于点 C,且新抛物线的对称轴 l 2与 x轴交于点 N,过点 C作 DE∥ x轴,分别交 l 1, l 2于点 D、 E,若四边形 MDEN是正方形,求平移后抛物线的解析式.

如图,抛物线 与 轴交于点 ,对称轴为直线 ,平行于 轴的直线与抛物线交于 、 两点,点 在对称轴左侧, .
(1)求此抛物线的解析式.
(2)点 在 轴上,直线 将 面积分成 两部分,请直接写出 点坐标.

点P1(﹣1,y1),P2(3,y2),P3(5,y3)均在二次函数y=﹣x2+2x+c的图象上,则y1,y2,y3的大小关系是( )
A.y3>y2>y1B.y3>y1=y2C.y1>y2>y3D.y1=y2>y3
如图,抛物线 与 轴的负半轴交于点 ,与 轴交于点 ,连接 ,点 在抛物线上,直线 与 轴交于点 .
(1)求 的值及直线 的函数表达式;
(2)点 在 轴正半轴上,点 在 轴正半轴上,连接 与直线 交于点 ,连接 并延长交 于点 ,若 为 的中点.
①求证: ;
②设点 的横坐标为 ,求 的长(用含 的代数式表示).

如图,抛物线 的对称轴为直线 ,下列结论中:
① ;② ;③ ;④ ,
正确的结论是 (只填序号).

已知抛物线 经过点 .
(1)求抛物线的函数表达式和顶点坐标.
(2)直线 交抛物线于点 , , 为正数.若点 在抛物线上且在直线 下方(不与点 , 重合),分别求出点 横坐标与纵坐标的取值范围.
如图,已知经过原点的抛物线 与 轴交于另一点 .
(1)求 的值和抛物线顶点 的坐标;
(2)求直线 的解析式.

已知抛物线 , , 是常数, 经过点 , ,当 时,与其对应的函数值 .有下列结论:
① ;
②关于 的方程 有两个不等的实数根;
③ .
其中,正确结论的个数是
| A. |
0 |
B. |
1 |
C. |
2 |
D. |
3 |
二次函数 的图象如图所示,有下列结论:① ,② ,③ ,④ ,正确的有( )

| A. |
1个 |
B. |
2个 |
C. |
3个 |
D. |
4个 |
如图,已知抛物线 的对称轴为直线 .给出下列结论:
① ;
② ;
③ ;
④ .
其中,正确的结论有

A.1个B.2个C.3个D.4个
如图,抛物线 过点 ,矩形 的边 在线段 上(点 在点 的左边),点 , 在抛物线上.设 ,当 时, .
(1)求抛物线的函数表达式.
(2)当 为何值时,矩形 的周长有最大值?最大值是多少?
(3)保持 时的矩形 不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点 , ,且直线 平分矩形的面积时,求抛物线平移的距离.

如图,在平面直角坐标系 中,抛物线 过点 ,与抛物线 的一个交点为 ,且点 的横坐标为2,点 、 分别是抛物线 、 上的动点.
(1)求抛物线 对应的函数表达式;
(2)若以点 、 、 、 为顶点的四边形恰为平行四边形,求出点 的坐标;
(3)设点 为抛物线 上另一个动点,且 平分 .若 ,求出点 的坐标.

试题篮
()