关于抛物线 ,给出下列结论:
①当 时,抛物线与直线 没有交点;
②若抛物线与 轴有两个交点,则其中一定有一个交点在点 与 之间;
③若抛物线的顶点在点 , , 围成的三角形区域内(包括边界),则 .
其中正确结论的序号是 .
已知 和 均是以 为自变量的函数,当 时,函数值分别是 和 ,若存在实数 ,使得 ,则称函数 和 具有性质 .以下函数 和 具有性质 的是
A. |
和 |
B. |
和 |
C. |
和 |
D. |
和 |
已知 、 两点的坐标分别为 、 ,线段 上有一动点 ,过点 作 轴的平行线交抛物线 于 , 、 , 两点.若 ,则 的取值范围为
A. |
|
B. |
|
C. |
|
D. |
|
已知关于 的一元二次方程 .
(1)若方程有两个不相等的实数根,求 的取值范围;
(2)二次函数 的部分图象如图所示,求一元二次方程 的解.
已知在平面直角坐标系 中,点 的坐标为 , 是抛物线 对称轴上的一个动点.小明经探究发现:当 的值确定时,抛物线的对称轴上能使 为直角三角形的点 的个数也随之确定,若抛物线 的对称轴上存在3个不同的点 ,使 为直角三角形,则 的值是 .
已知二次函数 的图象如图所示,有下列5个结论:
① ;
② ;
③ ;
④ ;
⑤若方程 有四个根,则这四个根的和为2.
其中正确的结论有
A. |
2个 |
B. |
3个 |
C. |
4个 |
D. |
5个 |
如图,二次函数 为常数)的图象的对称轴为直线 .
(1)求 的值.
(2)向下平移该二次函数的图象,使其经过原点,求平移后图象所对应的二次函数的表达式.
在"探索函数 的系数 , , 与图象的关系"活动中,老师给出了直角坐标系中的四个点: , , , .同学们探索了经过这四个点中的三个点的二次函数图象,发现这些图象对应的函数表达式各不相同,其中 的值最大为
A. |
|
B. |
|
C. |
|
D. |
|
已知抛物线 经过点 .
(1)求抛物线的函数表达式和顶点坐标.
(2)直线 交抛物线于点 , , 为正数.若点 在抛物线上且在直线 下方(不与点 , 重合),分别求出点 横坐标与纵坐标的取值范围.
将二次函数 的图象在 轴上方的部分沿 轴翻折后,所得新函数的图象如图所示.当直线 与新函数的图象恰有3个公共点时, 的值为
A. |
或 |
B. |
或 |
C. |
或 |
D. |
或 |
如图,已知经过原点的抛物线 与 轴交于另一点 .
(1)求 的值和抛物线顶点 的坐标;
(2)求直线 的解析式.
已知抛物线 , , 是常数, 经过点 , ,当 时,与其对应的函数值 .有下列结论:
① ;
②关于 的方程 有两个不等的实数根;
③ .
其中,正确结论的个数是
A. |
0 |
B. |
1 |
C. |
2 |
D. |
3 |
试题篮
()