如图,二次函数 的图象与 轴的正半轴交于点 ,对称轴为直线 .下面结论:
① ;
② ;
③ ;
④方程 必有一个根大于 且小于0.
其中正确的是 .(只填序号)
已知二次函数 的图象如图所示,有下列5个结论:
① ;
② ;
③ ;
④ ;
⑤若方程 有四个根,则这四个根的和为2.
其中正确的结论有
A. |
2个 |
B. |
3个 |
C. |
4个 |
D. |
5个 |
已知抛物线 上的部分点的横坐标 与纵坐标 的对应值如表:
|
|
|
0 |
1 |
2 |
3 |
|
|
|
3 |
0 |
|
|
3 |
|
以下结论正确的是
A. |
抛物线 的开口向下 |
B. |
当 时, 随 增大而增大 |
C. |
方程 的根为0和2 |
D. |
当 时, 的取值范围是 |
如图,二次函数 为常数)的图象的对称轴为直线 .
(1)求 的值.
(2)向下平移该二次函数的图象,使其经过原点,求平移后图象所对应的二次函数的表达式.
如图,在平面直角坐标系中,点 在抛物线 上,过点 作 轴的垂线,交抛物线于另一点 ,点 、 在线段 上,分别过点 、 作 轴的垂线交抛物线于 、 两点.当四边形 为正方形时,线段 的长为 .
如图,已知二次函数 的图象与 轴交于 ,顶点是 ,则以下结论:① ;② ;③若 ,则 或 ;④ .其中正确的有 个.
A. |
1 |
B. |
2 |
C. |
3 |
D. |
4 |
在"探索函数 的系数 , , 与图象的关系"活动中,老师给出了直角坐标系中的四个点: , , , .同学们探索了经过这四个点中的三个点的二次函数图象,发现这些图象对应的函数表达式各不相同,其中 的值最大为
A. |
|
B. |
|
C. |
|
D. |
|
已知函数 ,则下列说法不正确的个数是
①若该函数图像与 轴只有一个交点,则 ;
②方程 至少有一个整数根;
③若 ,则 的函数值都是负数;
④不存在实数 ,使得 对任意实数 都成立.
A. |
0 |
B. |
1 |
C. |
2 |
D. |
3 |
将二次函数 的图象在 轴上方的部分沿 轴翻折后,所得新函数的图象如图所示.当直线 与新函数的图象恰有3个公共点时, 的值为
A. |
或 |
B. |
或 |
C. |
或 |
D. |
或 |
已知抛物线 经过点 .
(1)求抛物线的函数表达式和顶点坐标.
(2)直线 交抛物线于点 , , 为正数.若点 在抛物线上且在直线 下方(不与点 , 重合),分别求出点 横坐标与纵坐标的取值范围.
如图,已知经过原点的抛物线 与 轴交于另一点 .
(1)求 的值和抛物线顶点 的坐标;
(2)求直线 的解析式.
已知抛物线 , , 是常数, 经过点 , ,当 时,与其对应的函数值 .有下列结论:
① ;
②关于 的方程 有两个不等的实数根;
③ .
其中,正确结论的个数是
A. |
0 |
B. |
1 |
C. |
2 |
D. |
3 |
二次函数 的图象如图所示,有下列结论:① ,② ,③ ,④ ,正确的有( )
A. |
1个 |
B. |
2个 |
C. |
3个 |
D. |
4个 |
如图,在平面直角坐标系中,抛物线 与 轴交于点 ,与x轴交于 两点(点 在点 的左侧),且 点坐标为 ,直线 的解析式为 .
(1)求抛物线的解析式;
(2)过点 作 ,交抛物线于点D,点E为直线 上方抛物线上一动点,连接CE,EB,BD,DC.求四边形BECD面积的最大值及相应点E的坐标;
(3)将抛物线 向左平移 个单位,已知点 为抛物线 的对称轴上一动点,点N为平移后的抛物线上一动点.在(2)中,当四边形 的面积最大时,是否存在以 为顶点的四边形为平行四边形?若存在,直接写出点N的坐标;若不存在,请说明理由.
试题篮
()