优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 二次函数的性质
初中数学

我们把方程 ( x - m ) 2 + ( y - n ) 2 = r 2 称为圆心为 ( m , n ) 、半径长为 r 的圆的标准方程.例如,圆心为 ( 1 , - 2 ) 、半径长为3的圆的标准方程是 ( x - 1 ) 2 + ( y + 2 ) 2 = 9 .在平面直角坐标系中, C 与轴交于点 A B ,且点 B 的坐标为 ( 8 , 0 ) ,与 y 轴相切于点 D ( 0 , 4 ) ,过点 A B D 的抛物线的顶点为 E

(1)求 C 的标准方程;

(2)试判断直线 AE C 的位置关系,并说明理由.

来源:2020年山东省济宁市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,二次函数 y = a x 2 + bx + c 的图象经过点 A ( 1 , 0 ) B ( 3 , 0 ) ,与 y 轴交于点 C .下列结论:

ac > 0

②当 x > 0 时, y x 的增大而增大;

3 a + c = 0

a + b a m 2 + bm

其中正确的个数有 (    )

A.

1个

B.

2个

C.

3个

D.

4个

来源:2021年山东省烟台市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,已知抛物线 y = a x 2 + bx + c ( a 0 ) 的图象与 x 轴交于 A B 两点,其对称轴与 x 轴交于点 C ,其中 A C 两点的横坐标分别为 - 1 和1,下列说法错误的是 (    )

A. abc < 0 B. 4 a + c = 0

C. 16 a + 4 b + c < 0 D.当 x > 2 时, y x 的增大而减小

来源:2020年山东省东营市中考数学试卷
  • 题型:未知
  • 难度:未知

已知在平面直角坐标系 xOy 中,点 A 的坐标为 ( 3 , 4 ) M 是抛物线 y = a x 2 + bx + 2 ( a 0 ) 对称轴上的一个动点.小明经探究发现:当 b a 的值确定时,抛物线的对称轴上能使 ΔAOM 为直角三角形的点 M 的个数也随之确定,若抛物线 y = a x 2 + bx + 2 ( a 0 ) 的对称轴上存在3个不同的点 M ,使 ΔAOM 为直角三角形,则 b a 的值是   

来源:2021年浙江省湖州市中考数学试卷
  • 题型:未知
  • 难度:未知

已知 ( - 3 , y 1 ) ( - 2 , y 2 ) ( 1 , y 3 ) 是抛物线 y = - 3 x 2 - 12 x + m 上的点,则 (    )

A. y 3 < y 2 < y 1 B. y 3 < y 1 < y 2 C. y 2 < y 3 < y 1 D. y 1 < y 3 < y 2

来源:2020年浙江省温州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,二次函数 y = a x 2 + bx + c ( a 0 ) 的图象与 x 轴的正半轴交于点 A ,对称轴为直线 x = 1 .下面结论:

abc < 0

2 a + b = 0

3 a + c > 0

④方程 a x 2 + bx + c = 0 ( a 0 ) 必有一个根大于 1 且小于0.

其中正确的是   .(只填序号)

来源:2021年山东省济宁市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,二次函数 y = a x 2 + 4 x - 3 图象的顶点是 A ,与 x 轴交于 B C 两点,与 y 轴交于点 D .点 B 的坐标是 ( 1 , 0 )

(1)求 A C 两点的坐标,并根据图象直接写出当 y > 0 x 的取值范围.

(2)平移该二次函数的图象,使点 D 恰好落在点 A 的位置上,求平移后图象所对应的二次函数的表达式.

来源:2020年浙江省宁波市中考数学试卷
  • 题型:未知
  • 难度:未知

已知二次函数 y = a x 2 + bx + c ( a 0 ) 的图象如图所示,有下列5个结论:

abc > 0

b 2 < 4 ac

2 c < 3 b

a + b > m ( am + b ) ( m 1 )

⑤若方程 | a x 2 + bx + c | = 1 有四个根,则这四个根的和为2.

其中正确的结论有 (    )

A.

2个

B.

3个

C.

4个

D.

5个

来源:2021年四川省遂宁市中考数学试卷
  • 题型:未知
  • 难度:未知

已知二次函数 y = x 2 ,当 a x b m y n ,则下列说法正确的是 (    )

A.当 n - m = 1 时, b - a 有最小值B.当 n - m = 1 时, b - a 有最大值

C.当 b - a = 1 时, n - m 无最小值D.当 b - a = 1 时, n - m 有最大值

来源:2020年浙江省嘉兴市中考数学试卷
  • 题型:未知
  • 难度:未知

已知抛物线 y = a x 2 + bx + c 上的部分点的横坐标 x 与纵坐标 y 的对应值如表:

x

1

0

1

2

3

y

3

0

1

m

3

以下结论正确的是 (    )

A.

抛物线 y = a x 2 + bx + c 的开口向下

B.

x < 3 时, y x 增大而增大

C.

方程 a x 2 + bx + c = 0 的根为0和2

D.

y > 0 时, x 的取值范围是 0 < x < 2

来源:2021年内蒙古赤峰市中考数学试卷
  • 题型:未知
  • 难度:未知

已知抛物线 y = a x 2 - 2 ax - 8 ( a 0 ) 经过点 ( - 2 , 0 )

(1)求抛物线的函数表达式和顶点坐标.

(2)直线 l 交抛物线于点 A ( - 4 , m ) B ( n , 7 ) n 为正数.若点 P 在抛物线上且在直线 l 下方(不与点 A B 重合),分别求出点 P 横坐标与纵坐标的取值范围.

来源:2021年浙江省温州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,已知经过原点的抛物线 y = 2 x 2 + mx x 轴交于另一点 A ( 2 , 0 )

(1)求 m 的值和抛物线顶点 M 的坐标;

(2)求直线 AM 的解析式.

来源:2021年浙江省湖州市中考数学试卷
  • 题型:未知
  • 难度:未知

已知抛物线 y = a x 2 + bx + c ( a b c 是常数, a 0 ) 经过点 ( - 1 , - 1 ) ( 0 , 1 ) ,当 x = - 2 时,与其对应的函数值 y > 1 .有下列结论:

abc > 0

②关于 x 的方程 a x 2 + bx + c - 3 = 0 有两个不等的实数根;

a + b + c > 7

其中,正确结论的个数是 (    )

A.

0

B.

1

C.

2

D.

3

来源:2021年天津市中考数学试卷
  • 题型:未知
  • 难度:未知

二次函数 y a x 2 + bx + c a 0 的图象如图所示,有下列结论:① abc 0 ,② 4 a 2 b + c 0 ,③ a b x ax + b ,④ 3 a + c 0 ,正确的有(  )

A.

1个

B.

2个

C.

3个

D.

4个

来源:2021年四川省广安市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,已知抛物线 y = a x 2 + bx + c 的对称轴为直线 x = 1 .给出下列结论:

ac < 0

b 2 - 4 ac > 0

2 a - b = 0

a - b + c = 0

其中,正确的结论有 (    )

A.1个B.2个C.3个D.4个

来源:2020年山东省枣庄市中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学二次函数的性质试题