优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 二次函数的性质
初中数学

二次函数y=ax2+bx+ca≠0)的图象如图所示,则下列结论中错误的是(  )

A.a>0
B.当x≥1时,yx的增大而增大
C.c<0
D.当﹣1<x<3时,y>0
  • 题型:未知
  • 难度:未知

二次函数 y = a x 2 + bx + c ( a 0 ) 的图象如图所示,则下列结论中不正确的是 (    )

A.

abc > 0

B.

函数的最大值为 a - b + c

C.

- 3 x 1 时, y 0

D.

4 a - 2 b + c < 0

来源:2021年四川省凉山州中考数学试卷
  • 题型:未知
  • 难度:未知

在平面直角坐标系中,一个二次函数的图象经过点A(1,0)、B(3,0)两点.
(1)这个二次函数的对称轴是直线          
(2)设这个二次函数的顶点为D,与y轴交于点C,它的对称轴与x轴交于点E,连接AD、DE和DB,当△AOC与△DEB相似时,求这个二次函数的表达式。
         

  • 题型:未知
  • 难度:未知

如图,已知二次函数的图象过点 O ( 0 , 0 ) A ( 8 , 4 ) ,与 x 轴交于另一点 B ,且对称轴是直线 x = 3

(1)求该二次函数的解析式;

(2)若 M OB 上的一点,作 MN / / AB OA N ,当 ΔANM 面积最大时,求 M 的坐标;

(3) P x 轴上的点,过 P PQ x 轴与抛物线交于 Q .过 A AC x 轴于 C ,当以 O P Q 为顶点的三角形与以 O A C 为顶点的三角形相似时,求 P 点的坐标.

来源:2018年湖南省常德市中考数学试卷
  • 题型:未知
  • 难度:未知

(年贵州省遵义市)如图,抛物线≠0)与轴交于A(-4,0),B(2,0),与轴交与点C(0,2).

(1)求抛物线的解析式;
(2)若点D为该抛物线上的一个动点,且在直线AC上方,当以A,C,D为顶点的三角形面积最大时,求点D的坐标及此时三角形的面积;(解题用图见答题卡)   
(3)以AB为直径作⊙M,直线经过点E(-1,-5),并且与⊙M相切,求该直线的解析式.(解题用图见答题卡)

  • 题型:未知
  • 难度:未知

二次函数 y = a x 2 + bx + c ( a 0 ) 的大致图象如图所示,顶点坐标为 ( - 2 , - 9 a ) ,下列结论:① 4 a + 2 b + c > 0 ;② 5 a - b + c = 0 ;③若方程 a ( x + 5 ) ( x - 1 ) = - 1 有两个根 x 1 x 2 ,且 x 1 < x 2 ,则 - 5 < x 1 < x 2 < 1 ;④若方程 | a x 2 + bx + c | = 1 有四个根,则这四个根的和为 - 4 .其中正确的结论有 (    )

A.1个B.2个C.3个D.4个

来源:2018年湖北省荆门市中考数学试卷
  • 题型:未知
  • 难度:未知

若三个非零实数 x y z 满足:只要其中一个数的倒数等于另外两个数的倒数的和,则称这三个实数 x y z 构成“和谐三组数”.

(1)实数1,2,3可以构成“和谐三组数”吗?请说明理由;

(2)若 M ( t , y 1 ) N ( t + 1 , y 2 ) R ( t + 3 , y 3 ) 三点均在函数 y = k x ( k 为常数, k 0 ) 的图象上,且这三点的纵坐标 y 1 y 2 y 3 构成“和谐三组数”,求实数 t 的值;

(3)若直线 y = 2 bx + 2 c ( bc 0 ) x 轴交于点 A ( x 1 0 ) ,与抛物线 y = a x 2 + 3 bx + 3 c ( a 0 ) 交于 B ( x 2 y 2 ) C ( x 3 y 3 ) 两点.

①求证: A B C 三点的横坐标 x 1 x 2 x 3 构成“和谐三组数”;

②若 a > 2 b > 3 c x 2 = 1 ,求点 P ( c a b a ) 与原点 O 的距离 OP 的取值范围.

来源:2017年湖南省长沙市中考数学试卷
  • 题型:未知
  • 难度:未知

已知抛物线 y = a x 2 - 2 ax - 8 ( a 0 ) 经过点 ( - 2 , 0 )

(1)求抛物线的函数表达式和顶点坐标.

(2)直线 l 交抛物线于点 A ( - 4 , m ) B ( n , 7 ) n 为正数.若点 P 在抛物线上且在直线 l 下方(不与点 A B 重合),分别求出点 P 横坐标与纵坐标的取值范围.

来源:2021年浙江省温州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,已知经过原点的抛物线 y = 2 x 2 + mx x 轴交于另一点 A ( 2 , 0 )

(1)求 m 的值和抛物线顶点 M 的坐标;

(2)求直线 AM 的解析式.

来源:2021年浙江省湖州市中考数学试卷
  • 题型:未知
  • 难度:未知

已知抛物线 y = a x 2 + bx + c ( a b c 是常数, a 0 ) 经过点 ( - 1 , - 1 ) ( 0 , 1 ) ,当 x = - 2 时,与其对应的函数值 y > 1 .有下列结论:

abc > 0

②关于 x 的方程 a x 2 + bx + c - 3 = 0 有两个不等的实数根;

a + b + c > 7

其中,正确结论的个数是 (    )

A.

0

B.

1

C.

2

D.

3

来源:2021年天津市中考数学试卷
  • 题型:未知
  • 难度:未知

二次函数 y a x 2 + bx + c a 0 的图象如图所示,有下列结论:① abc 0 ,② 4 a 2 b + c 0 ,③ a b x ax + b ,④ 3 a + c 0 ,正确的有(  )

A.

1个

B.

2个

C.

3个

D.

4个

来源:2021年四川省广安市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,已知抛物线 y = a x 2 + bx + c 的对称轴为直线 x = 1 .给出下列结论:

ac < 0

b 2 - 4 ac > 0

2 a - b = 0

a - b + c = 0

其中,正确的结论有 (    )

A.1个B.2个C.3个D.4个

来源:2020年山东省枣庄市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,抛物线 y = a x 2 + bx ( a < 0 ) 过点 E ( 10 , 0 ) ,矩形 ABCD 的边 AB 在线段 OE 上(点 A 在点 B 的左边),点 C D 在抛物线上.设 A ( t , 0 ) ,当 t = 2 时, AD = 4

(1)求抛物线的函数表达式.

(2)当 t 为何值时,矩形 ABCD 的周长有最大值?最大值是多少?

(3)保持 t = 2 时的矩形 ABCD 不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点 G H ,且直线 GH 平分矩形的面积时,求抛物线平移的距离.

来源:2018年浙江省金华市(丽水市)中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系 xOy 中,抛物线 L 1 : y = x 2 + bx + c 过点 C ( 0 , - 3 ) ,与抛物线 L 2 : y = - 1 2 x 2 - 3 2 x + 2 的一个交点为 A ,且点 A 的横坐标为2,点 P Q 分别是抛物线 L 1 L 2 上的动点.

(1)求抛物线 L 1 对应的函数表达式;

(2)若以点 A C P Q 为顶点的四边形恰为平行四边形,求出点 P 的坐标;

(3)设点 R 为抛物线 L 1 上另一个动点,且 CA 平分 PCR .若 OQ / / PR ,求出点 Q 的坐标.

来源:2019年江苏省连云港市中考数学试卷
  • 题型:未知
  • 难度:未知

已知:抛物线 y a x 2 + bx + c x轴交于点A(2,0)、B(4,0),且过点C(0,4).

(1)求出抛物线的解析式和顶点坐标.

(2)请你求出抛物线向左平移3个单位,再向上平移1.5个单位后抛物线的解析式.

来源:2016年黑龙江省七台河市中考数学试卷(农垦、森工用)
  • 题型:未知
  • 难度:未知

初中数学二次函数的性质试题