如图,已知抛物线 , , 为常数, 经过点 ,且对称轴为直线 ,有下列结论:① ;② ;③ ;④无论 , , 取何值,抛物线一定经过 , ;⑤ .其中正确结论有
A. |
1个 |
B. |
2个 |
C. |
3个 |
D. |
4个 |
如图,过抛物线 上一点 作 轴的平行线,交抛物线于另一点 ,交 轴于点 ,已知点 的横坐标为 .
(1)求抛物线的对称轴和点 的坐标;
(2)在 上任取一点 ,连接 ,作点 关于直线 的对称点 ;
①连接 ,求 的最小值;
②当点 落在抛物线的对称轴上,且在 轴上方时,求直线 的函数表达式.
已知二次函数 , , 是常数, 的 与 的部分对应值如下表:
|
|
|
|
0 |
2 |
|
6 |
0 |
|
|
6 |
下列结论:
① ;
②当 时,函数最小值为 ;
③若点 ,点 在二次函数图象上,则 ;
④方程 有两个不相等的实数根.
其中,正确结论的序号是 .(把所有正确结论的序号都填上)
如图,抛物线 与 轴的负半轴交于点 ,与 轴交于点 ,连接 ,点 在抛物线上,直线 与 轴交于点 .
(1)求 的值及直线 的函数表达式;
(2)点 在 轴正半轴上,点 在 轴正半轴上,连接 与直线 交于点 ,连接 并延长交 于点 ,若 为 的中点.
①求证: ;
②设点 的横坐标为 ,求 的长(用含 的代数式表示).
已知 、 两点的坐标分别为 、 ,线段 上有一动点 ,过点 作 轴的平行线交抛物线 于 , 、 , 两点.若 ,则 的取值范围为
A. |
|
B. |
|
C. |
|
D. |
|
对于二次函数 的图象与性质,下列说法正确的是
A.对称轴是直线 ,最小值是2
B.对称轴是直线 ,最大值是2
C.对称轴是直线 ,最小值是2
D.对称轴是直线 ,最大值是2
我们把方程 称为圆心为 、半径长为 的圆的标准方程.例如,圆心为 、半径长为3的圆的标准方程是 .在平面直角坐标系中, 与轴交于点 , ,且点 的坐标为 ,与 轴相切于点 ,过点 , , 的抛物线的顶点为 .
(1)求 的标准方程;
(2)试判断直线 与 的位置关系,并说明理由.
如图,抛物线 交 轴于点 , 轴,交抛物线于点 ,点 在抛物线上,且在第一象限内, 轴,交 轴于点 ,交 的延长线于点 , .
(1)用含 的代数式表示 的长.
(2)当 时,判断点 是否落在抛物线上,并说明理由.
(3)若 轴,交 于点 ,交 于点 .
①若 与 的面积相等,求 的值.
②连接 ,交 于点 ,若 与 的面积相等,则 的值是 .
如图,二次函数 的图象经过点 , ,与 轴交于点 .下列结论:
① ;
②当 时, 随 的增大而增大;
③ ;
④ .
其中正确的个数有
A. |
1个 |
B. |
2个 |
C. |
3个 |
D. |
4个 |
已知抛物线 经过点 .
(1)求抛物线的函数表达式和顶点坐标.
(2)直线 交抛物线于点 , , 为正数.若点 在抛物线上且在直线 下方(不与点 , 重合),分别求出点 横坐标与纵坐标的取值范围.
如图,已知经过原点的抛物线 与 轴交于另一点 .
(1)求 的值和抛物线顶点 的坐标;
(2)求直线 的解析式.
已知抛物线 , , 是常数, 经过点 , ,当 时,与其对应的函数值 .有下列结论:
① ;
②关于 的方程 有两个不等的实数根;
③ .
其中,正确结论的个数是
A. |
0 |
B. |
1 |
C. |
2 |
D. |
3 |
二次函数 的图象如图所示,有下列结论:① ,② ,③ ,④ ,正确的有( )
A. |
1个 |
B. |
2个 |
C. |
3个 |
D. |
4个 |
如图,已知抛物线 的对称轴为直线 .给出下列结论:
① ;
② ;
③ ;
④ .
其中,正确的结论有
A.1个B.2个C.3个D.4个
试题篮
()