已知直线 与抛物线 .
(1)求证:直线 与该抛物线总有两个交点;
(2)设直线 与该抛物线两交点为 , , 为原点,当 时,求 的面积.
已知关于 的一元二次方程 有实数根.
(1)求 的值;
(2)先作 的图象关于 轴的对称图形,然后将所作图形向左平移3个单位长度,再向上平移2个单位长度,写出变化后图象的解析式;
(3)在(2)的条件下,当直线 与变化后的图象有公共点时,求 的最大值和最小值.
已知关于 的一元二次方程 有实数根.
(1)求 的值;
(2)先作 的图象关于 轴的对称图形,然后将所作图形向左平移3个单位长度,再向上平移2个单位长度,写出变化后图象的解析式;
(3)在(2)的条件下,当直线 与变化后的图象有公共点时,求 的最大值和最小值.
已知关于 的一元二次方程 ,其中 为常数.
(1)求证:无论 为何值,方程总有两个不相等实数根;
(2)已知函数 的图象不经过第三象限,求 的取值范围;
(3)若原方程的一个根大于3,另一个根小于3,求 的最大整数值.
如图,二次函数 图象的顶点为 ,对称轴是直线 ,一次函数 的图象与 轴交于点 ,且与直线 关于 的对称直线交于点 .
(1)点 的坐标是 ;
(2)直线 与直线 交于点 , 是线段 上一点(不与点 、 重合),点 的纵坐标为 .过点 作直线与线段 、 分别交于点 、 ,使得 与 相似.
①当 时,求 的长;
②若对于每一个确定的 的值,有且只有一个 与 相似,请直接写出 的取值范围 .
已知二次函数 的图象与 轴交于 、 两点, 在 左侧,且 ,与 轴交于点 .
(1)求 点坐标,并判断 的正负性;
(2)设这个二次函数的图象的对称轴与直线 相交于点 ,已知 ,直线 与 轴交于点 ,连接 .
①若 的面积为8,求二次函数的解析式;
②若 为锐角三角形,请直接写出 的取值范围.
已知二次函数 的图象与它的对称轴相交于点 ,与 轴相交于点 ,其对称轴与 轴相交于点
(1)若直线 与二次函数的图象的另一个交点 在第一象限内,且 ,求这个二次函数的表达式;
(2)已知 在 轴上,且 为等腰三角形,若符合条件的点 恰好有2个,试直接写出 的值.
如图,在平面直角坐标系 中,二次函数图象的顶点坐标为 ,该图象与 轴相交于点 、 ,与 轴相交于点 ,其中点 的横坐标为1.
(1)求该二次函数的表达式;
(2)求 .
已知:二次函数 为常数).
(1)请写出该二次函数的三条性质;
(2)在同一直角坐标系中,若该二次函数的图象在 的部分与一次函数 的图象有两个交点,求 的取值范围.
如图,在平面直角坐标系 中,抛物线 过点 ,与抛物线 的一个交点为 ,且点 的横坐标为2,点 、 分别是抛物线 、 上的动点.
(1)求抛物线 对应的函数表达式;
(2)若以点 、 、 、 为顶点的四边形恰为平行四边形,求出点 的坐标;
(3)设点 为抛物线 上另一个动点,且 平分 .若 ,求出点 的坐标.
已知,点 是二次函数 图象上的一点,点 的坐标为 ,直角坐标系中的坐标原点 与点 , 在同一个圆上,圆心 的纵坐标为 .
(1)求 的值;
(2)当 , , 三点在同一条直线上时,求点 和点 的坐标;
(3)当点 在第一象限时,过点 作 轴,垂足为点 ,求证: .
如图,在平面直角坐标系中,抛物线 的顶点坐标为 ,与 轴交于点 ,与 轴交于点 、 .
(1)求二次函数 的表达式;
(2)过点 作 平行于 轴,交抛物线于点 ,点 为抛物线上的一点(点 在 上方),作 平行于 轴交 于点 ,问当点 在何位置时,四边形 的面积最大?并求出最大面积;
(3)若点 在抛物线上,点 在其对称轴上,使得以 、 、 、 为顶点的四边形是平行四边形,且 为其一边,求点 、 的坐标.
抛物线 经过点 , 和点 ,且这个抛物线的对称轴为直线 ,顶点为 .
(1)求抛物线的解析式;
(2)连接 、 、 ,求 的面积.
如图,在平面直角坐标系中,矩形 的边 、 分别在 轴、 轴上,点 坐标为 , ,二次函数 的图象经过点 ,顶点为点 .
(1)当 时,顶点 到 轴的距离等于 ;
(2)点 是二次函数 的图象与 轴的一个公共点(点 与点 不重合),求 的最大值及取得最大值时的二次函数表达式;
(3)矩形 的对角线 、 交于点 ,直线 平行于 轴,交二次函数 的图象于点 、 ,连接 、 ,当 时,求 的值.
试题篮
()