优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 二次函数的性质 / 解答题
初中数学

二次函数 y = a x 2 + bx + 2 的图象交 x 轴于点 ( 1 , 0 ) B ( 4 , 0 ) 两点,交 y 轴于点 C .动点 M 从点 A 出发,以每秒2个单位长度的速度沿 AB 方向运动,过点 M MN x 轴交直线 BC 于点 N ,交抛物线于点 D ,连接 AC ,设运动的时间为 t 秒.

(1)求二次函数 y = a x 2 + bx + 2 的表达式;

(2)连接 BD ,当 t = 3 2 时,求 ΔDNB 的面积;

(3)在直线 MN 上存在一点 P ,当 ΔPBC 是以 BPC 为直角的等腰直角三角形时,求此时点 D 的坐标;

(4)当 t = 5 4 时,在直线 MN 上存在一点 Q ,使得 AQC + OAC = 90 ° ,求点 Q 的坐标.

来源:2019年甘肃省兰州市中考数学试卷(a卷)
  • 题型:未知
  • 难度:未知

如图,抛物线 y = a x 2 + bx + c 经过 A ( 1 , 0 ) B ( 4 , 0 ) C ( 0 , 3 ) 三点, D 为直线 BC 上方抛物线上一动点, DE BC E

(1)求抛物线的函数表达式;

(2)如图1,求线段 DE 长度的最大值;

(3)如图2,设 AB 的中点为 F ,连接 CD CF ,是否存在点 D ,使得 ΔCDE 中有一个角与 CFO 相等?若存在,求点 D 的横坐标;若不存在,请说明理由.

来源:2018年山东省莱芜市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,抛物线 y = a x 2 + bx 4 经过 A ( 3 , 0 ) B ( 5 , 4 ) 两点,与 y 轴交于点 C ,连接 AB AC BC

(1)求抛物线的表达式;

(2)求证: AB 平分 CAO

(3)抛物线的对称轴上是否存在点 M ,使得 ΔABM 是以 AB 为直角边的直角三角形,若存在,求出点 M 的坐标;若不存在,请说明理由.

来源:2018年甘肃省兰州市中考数学试卷(a卷)
  • 题型:未知
  • 难度:未知

已知直线 y = x + 3 x 轴、 y 轴分别相交于 A B 两点,抛物线 y = x 2 + bx + c 经过 A B 两点,点 M 在线段 OA 上,从 O 点出发,向点 A 以每秒1个单位的速度匀速运动;同时点 N 在线段 AB 上,从点 A 出发,向点 B 以每秒 2 个单位的速度匀速运动,连接 MN ,设运动时间为 t

(1)求抛物线解析式;

(2)当 t 为何值时, ΔAMN 为直角三角形;

(3)过 N NH / / y 轴交抛物线于 H ,连接 MH ,是否存在点 H 使 MH / / AB ,若存在,求出点 H 的坐标,若不存在,请说明理由.

来源:2018年四川省凉山州中考数学试卷
  • 题型:未知
  • 难度:未知

已知抛物线与 x 轴交于 A ( 6 , 0 ) B ( 5 4 0 ) 两点,与 y 轴交于点 C ,过抛物线上点 M ( 1 , 3 ) MN x 轴于点 N ,连接 OM

(1)求此抛物线的解析式;

(2)如图1,将 ΔOMN 沿 x 轴向右平移 t 个单位 ( 0 t 5 ) 到△ O ' M ' N ' 的位置, M ' N ' M ' O ' 与直线 AC 分别交于点 E F

①当点 F M ' O ' 的中点时,求 t 的值;

②如图2,若直线 M ' N ' 与抛物线相交于点 G ,过点 G GH / / M ' O ' AC 于点 H ,试确定线段 EH 是否存在最大值?若存在,求出它的最大值及此时 t 的值;若不存在,请说明理由.

来源:2016年四川省资阳市中考数学试卷
  • 题型:未知
  • 难度:未知

如图1,抛物线 y = a x 2 + bx + 4 A ( 2 , 0 ) B ( 4 , 0 ) 两点,交 y 轴于点 C ,过点 C x 轴的平行线与抛物线上的另一个交点为 D ,连接 AC BC .点 P 是该抛物线上一动点,设点 P 的横坐标为 m ( m > 4 )

(1)求该抛物线的表达式和 ACB 的正切值;

(2)如图2,若 ACP = 45 ° ,求 m 的值;

(3)如图3,过点 A P 的直线与 y 轴于点 N ,过点 P PM CD ,垂足为 M ,直线 MN x 轴交于点 Q ,试判断四边形 ADMQ 的形状,并说明理由.

来源:2018年山东省济南市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,抛物线 y = a x 2 + bx - 4 ( a 0 ) x 轴交于点 A ( - 1 , 0 ) B ( 4 , 0 ) ,与 y 轴交于点 C

(1)求该抛物线的解析式;

(2)直线 l 为该抛物线的对称轴,点 D 与点 C 关于直线 l 对称,点 P 为直线 AD 下方抛物线上一动点,连接 PA PD ,求 ΔPAD 面积的最大值.

(3)在(2)的条件下,将抛物线 y = a x 2 + bx - 4 ( a 0 ) 沿射线 AD 平移 4 2 个单位,得到新的抛物线 y 1 ,点 E 为点 P 的对应点,点 F y 1 的对称轴上任意一点,在 y 1 上确定一点 G ,使得以点 D E F G 为顶点的四边形是平行四边形,写出所有符合条件的点 G 的坐标,并任选其中一个点的坐标,写出求解过程.

来源:2021年重庆市中考数学试卷(B卷)
  • 题型:未知
  • 难度:未知

已知,抛物线 y = x 2 + bx + c 经过点 A ( 0 , 3 ) B ( 5 , 8 )

(1)求抛物线 y = x 2 + bx + c 的解析式和顶点坐标;

(2)知图1,连接 AB ,在 x 轴上确定一点 C ,使得 ABC = 90 ° ,求出点 C 的坐标;

(3)将抛物线 y = x 2 + bx + c 向左平移2个单位长度,再向上平移1个单位长度,得到抛物线 y = a x 2 + mx + n ,直线 y = kx + 2 ( k > 0 ) 与抛物线 y = a x 2 + mx + n 交于点 E ( x 1 y 1 ) F ( x 2 y 2 ) ( x 1 < x 2 ) ,连接 OE OF ,若 S ΔEOF = = 3 ,在图2中画出平面直角坐标系并求 k

来源:2016年四川省遂宁市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,已知抛物线 L : y = x 2 + bx + c 经过点 A ( 0 , - 5 ) B ( 5 , 0 )

(1)求 b c 的值;

(2)连结 AB ,交抛物线 L 的对称轴于点 M

①求点 M 的坐标;

②将抛物线 L 向左平移 m ( m > 0 ) 个单位得到抛物线 L 1 .过点 M MN / / y 轴,交抛物线 L 1 于点 N P 是抛物线 L 1 上一点,横坐标为 - 1 ,过点 P PE / / x 轴,交抛物线 L 于点 E ,点 E 在抛物线 L 对称轴的右侧.若 PE + MN = 10 ,求 m 的值.

来源:2021年浙江省丽水市中考数学试卷
  • 题型:未知
  • 难度:未知

已知抛物线 y = a x 2 + c ( a 0 ) 经过点 P ( 3 , 0 ) Q ( 1 , 4 )

(1)求抛物线的解析式;

(2)若点 A 在直线 PQ 上,过点 A AB x 轴于点 B ,以 AB 为斜边在其左侧作等腰直角三角形 ABC

①当 Q A 重合时,求 C 到抛物线对称轴的距离;

②若 C 在抛物线上,求 C 的坐标.

来源:2021年上海市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,二次函数 y = x 2 + bx + c 的图象与 x 轴交于点 A ( - 1 , 0 ) B ( 3 , 0 ) ,与 y 轴交于点 C

(1) b =    c =   

(2)若点 D 在该二次函数的图象上,且 S ΔABD = 2 S ΔABC ,求点 D 的坐标;

(3)若点 P 是该二次函数图象上位于 x 轴上方的一点,且 S ΔAPC = S ΔAPB ,写出点 P 的坐标.

来源:2021年江苏省扬州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,抛物线 y = a x 2 + bx + 4 x 轴于 A ( - 3 , 0 ) B ( 4 , 0 ) 两点,与 y 轴交于点 C ,连接 AC BC M 为线段 OB 上的一个动点,过点 M PM x 轴,交抛物线于点 P ,交 BC 于点 Q

(1)求抛物线的表达式;

(2)过点 P PN BC ,垂足为点 N .设 M 点的坐标为 M ( m , 0 ) ,请用含 m 的代数式表示线段 PN 的长,并求出当 m 为何值时 PN 有最大值,最大值是多少?

(3)试探究点 M 在运动过程中,是否存在这样的点 Q ,使得以 A C Q 为顶点的三角形是等腰三角形.若存在,请求出此时点 Q 的坐标;若不存在,请说明理由.

来源:2020年山东省枣庄市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,抛物线 y = a x 2 + bx + c x 轴于 A B 两点,交 y 轴于点 C ( 0 , 4 3 ) OA = 1 OB = 4 ,直线 l 过点 A ,交 y 轴于点 D ,交抛物线于点 E ,且满足 tan OAD = 3 4

(1)求抛物线的解析式;

(2)动点 P 从点 B 出发,沿 x 轴正方向以每秒2个单位长度的速度向点 A 运动,动点 Q 从点 A 出发,沿射线 AE 以每秒1个单位长度的速度向点 E 运动,当点 P 运动到点 A 时,点 Q 也停止运动,设运动时间为 t 秒.

①在 P Q 的运动过程中,是否存在某一时刻 t ,使得 ΔADC ΔPQA 相似,若存在,求出 t 的值;若不存在,请说明理由.

②在 P Q 的运动过程中,是否存在某一时刻 t ,使得 ΔAPQ ΔCAQ 的面积之和最大?若存在,求出 t 的值;若不存在,请说明理由.

来源:2018年四川省乐山市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,抛物线 y = a x 2 + bx 5 y 轴于点 A ,交 x 轴于点 B ( 5 , 0 ) 和点 C ( 1 , 0 ) ,过点 A AD / / x 轴交抛物线于点 D

(1)求此抛物线的表达式;

(2)点 E 是抛物线上一点,且点 E 关于 x 轴的对称点在直线 AD 上,求 ΔEAD 的面积;

(3)若点 P 是直线 AB 下方的抛物线上一动点,当点 P 运动到某一位置时, ΔABP 的面积最大,求出此时点 P 的坐标和 ΔABP 的最大面积.

来源:2018年山东省菏泽市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,抛物线 y = x 2 + bx + c x 轴交于 A B 两点, B 点坐标为 ( 3 , 0 ) ,与 y 轴交于点 C ( 0 , 3 )

(1)求抛物线的解析式;

(2)点 P 在抛物线位于第四象限的部分上运动,当四边形 ABPC 的面积最大时,求点 P 的坐标和四边形 ABPC 的最大面积.

(3)直线 l 经过 A C 两点,点 Q 在抛物线位于 y 轴左侧的部分上运动,直线 m 经过点 B 和点 Q ,是否存在直线 m ,使得直线 l m x 轴围成的三角形和直线 l m y 轴围成的三角形相似?若存在,求出直线 m 的解析式,若不存在,请说明理由.

来源:2016年四川省攀枝花市中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学二次函数的性质解答题