如图,已知二次函数的图象与 轴交于 和 两点,与 轴交于 ,对称轴为直线 ,直线 经过点 ,且与 轴交于点 ,与抛物线交于点 ,与对称轴交于点 .
(1)求抛物线的解析式和 的值;
(2)在 轴上是否存在点 ,使得以 、 、 为顶点的三角形与 相似,若存在,求出点 的坐标;若不存在,试说明理由;
(3)直线 上有 、 两点 在 的左侧),且 ,若将线段 在直线 上平移,当它移动到某一位置时,四边形 的周长会达到最小,请求出周长的最小值(结果保留根号).
如图,已知抛物线 与 轴交于点 和 ,与 轴交于点 ,对称轴为直线 .
(1)求抛物线的解析式;
(2)如图1,若点 是线段 上的一个动点(不与点 , 重合),过点 作 轴的平行线交抛物线于点 ,连接 ,当线段 长度最大时,判断四边形 的形状并说明理由;
(3)如图2,在(2)的条件下, 是 的中点,过点 的直线与抛物线交于点 ,且 .在 轴上是否存在点 ,得 为等腰三角形?若存在,求点 的坐标;若不存在,请说明理由.
如图,在平面直角坐标系 中,抛物线 与两坐标轴分别相交于 , , 三点.
(1)求证: ;
(2)点 是第一象限内该抛物线上的动点,过点 作 轴的垂线交 于点 ,交 轴于点 .
①求 的最大值;
②点 是 的中点,若以点 , , 为顶点的三角形与 相似,求点 的坐标.
如图,抛物线 与 轴交于 、 两点,与 轴交于 点, , .
(1)求抛物线的解析式;
(2)在第二象限内的抛物线上确定一点 ,使四边形 的面积最大,求出点 的坐标;
(3)在(2)的结论下,点 为 轴上一动点,抛物线上是否存在一点 ,使点 、 、 、 为顶点的四边形是平行四边形,若存在,请直接写出 点的坐标;若不存在,请说明理由.
已知二次函数 的图象开口向上,且经过点 , .
(1)求 的值(用含 的代数式表示);
(2)若二次函数 在 时, 的最大值为1,求 的值;
(3)将线段 向右平移2个单位得到线段 .若线段 与抛物线 仅有一个交点,求 的取值范围.
已知关于 的一元二次方程 .
(1)若方程有两个不相等的实数根,求 的取值范围;
(2)二次函数 的部分图象如图所示,求一元二次方程 的解.
如图,在平面直角坐标系中,抛物线 的图象与坐标轴相交于 A、 B、 C三点,其中 A点坐标为(3,0), B点坐标为(﹣1,0),连接 AC、 BC.动点 P从点 A出发,在线段 AC上以每秒 个单位长度向点 C做匀速运动;同时,动点 Q从点 B出发,在线段 BA上以每秒1个单位长度向点 A做匀速运动,当其中一点到达终点时,另一点随之停止运动,连接 PQ,设运动时间为 t秒.
(1)求 b、 c的值.
(2)在 P、 Q运动的过程中,当 t为何值时,四边形 BCPQ的面积最小,最小值为多少?
(3)在线段 AC上方的抛物线上是否存在点 M,使△ MPQ是以点 P为直角顶点的等腰直角三角形?若存在,请求出点 M的坐标;若不存在,请说明理由.
已知抛物线 经过点 、 .
(1)求抛物线的解析式;
(2)若点 在直线 上,过点 作 轴于点 ,以 为斜边在其左侧作等腰直角三角形 .
①当 与 重合时,求 到抛物线对称轴的距离;
②若 在抛物线上,求 的坐标.
已知抛物线 与 轴交于点 、 (点 在点 的左侧),与 轴交于点 .
(1)求点 、 的坐标;
(2)设点 与点 关于该抛物线的对称轴对称.在 轴上是否存在点 ,使 与 相似,且 与 是对应边?若存在,求出点 的坐标;若不存在,请说明理由.
综合与探究
如图,抛物线 与 轴交于 , 两点(点 在点 的左侧),与 轴交于点 ,连接 , .
(1)求 、 , 三点的坐标并直接写出直线 , 的函数表达式.
(2)点 是直线 下方抛物线上的一个动点,过点 作 的平行线 ,交线段 于点 .
①试探究:在直线 上是否存在点 ,使得以点 , , , 为顶点的四边形为菱形,若存在,求出点 的坐标,若不存在,请说明理由;
②设抛物线的对称轴与直线 交于点 ,与直线 交于点 .当 时,请直接写出 的长.
如图,在平面直角坐标系中,直线 与 轴交于点 ,与 轴交于点 ,抛物线 经过坐标原点和点 ,顶点为点 .
(1)求抛物线的关系式及点 的坐标;
(2)点 是直线 下方的抛物线上一动点,连接 , ,当 的面积等于 时,求 点的坐标;
(3)将直线 向下平移,得到过点 的直线 ,且与 轴负半轴交于点 ,取点 ,连接 ,求证: .
如图,抛物线 经过点 , ,与 轴正半轴交于点 ,且 ,抛物线的顶点为 ,对称轴交 轴于点 .直线 经过 , 两点.
(1)求抛物线及直线 的函数表达式;
(2)点 是抛物线对称轴上一点,当 的值最小时,求出点 的坐标及 的最小值;
(3)连接 ,若点 是抛物线上对称轴右侧一点,点 是直线 上一点,试探究是否存在以点 为直角顶点的 ,且满足 .若存在,求出点 的坐标;若不存在,请说明理由.
在平面直角坐标系中,抛物线 的顶点为 .
(1)求顶点 的坐标(用含有字母 的代数式表示);
(2)若点 , 在抛物线上,且 ,则 的取值范围是 ;(直接写出结果即可)
(3)当 时,函数 的最小值等于6,求 的值.
二次函数 的图象经过点 , ,与 轴交于点 ,点 为第二象限内抛物线上一点,连接 、 ,交于点 ,过点 作 轴于点 .
(1)求二次函数的表达式;
(2)连接 ,当 时,求直线 的表达式;
(3)请判断: 是否有最大值,如有请求出有最大值时点 的坐标,如没有请说明理由.
试题篮
()