如图,在平面直角坐标系中,抛物线 交 轴于点 和 ,交 轴于点 ,抛物线的对称轴交 轴于点 ,交抛物线于点 .
(1)求抛物线的解析式;
(2)将线段 绕着点 沿顺时针方向旋转得到线段 ,旋转角为 ,连接 , ,求 的最小值;
(3) 为平面直角坐标系中一点,在抛物线上是否存在一点 ,使得以 , , , 为顶点的四边形为矩形?若存在,请写出点 的横坐标;若不存在,请说明理由.
学习了图形的旋转之后,小明知道,将点 绕着某定点 顺时针旋转一定的角度 ,能得到一个新的点 ,经过进一步探究,小明发现,当上述点 在某函数图象上运动时,点 也随之运动,并且点 的运动轨迹能形成一个新的图形.
试根据下列各题中所给的定点 的坐标、角度 的大小来解决相关问题.
【初步感知】
如图1,设 , ,点 是一次函数 图象上的动点,已知该一次函数的图象经过点 .
(1)点 旋转后,得到的点 的坐标为 ;
(2)若点 的运动轨迹经过点 ,求原一次函数的表达式.
【深入感悟】
如图2,设 , ,点 是反比例函数 的图象上的动点,过点 作二、四象限角平分线的垂线,垂足为 ,求 的面积.
【灵活运用】
如图3,设 , ,点 是二次函数 图象上的动点,已知点 、 ,试探究 的面积是否有最小值?若有,求出该最小值;若没有,请说明理由.
试题篮
()