优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 二次函数的最值 / 解答题
初中数学

如图,在平面直角坐标系中,抛物线 y = x 2 + bx + c x 轴于点 A C ( 1 , 0 ) ,交 y 轴于点 B ( 0 , 3 ) ,抛物线的对称轴交 x 轴于点 E ,交抛物线于点 F

(1)求抛物线的解析式;

(2)将线段 OE 绕着点 O 沿顺时针方向旋转得到线段 O E ' ,旋转角为 α ( 0 ° < α < 90 ° ) ,连接 AE ' BE ' ,求 BE ' + 1 3 AE ' 的最小值;

(3) M 为平面直角坐标系中一点,在抛物线上是否存在一点 N ,使得以 A B M N 为顶点的四边形为矩形?若存在,请写出点 N 的横坐标;若不存在,请说明理由.

来源:2021年四川省达州市中考数学试卷
  • 题型:未知
  • 难度:未知

学习了图形的旋转之后,小明知道,将点 P 绕着某定点 A 顺时针旋转一定的角度 α ,能得到一个新的点 P ' ,经过进一步探究,小明发现,当上述点 P 在某函数图象上运动时,点 P ' 也随之运动,并且点 P ' 的运动轨迹能形成一个新的图形.

试根据下列各题中所给的定点 A 的坐标、角度 α 的大小来解决相关问题.

【初步感知】

如图1,设 A ( 1 , 1 ) α = 90 ° ,点 P 是一次函数 y = kx + b 图象上的动点,已知该一次函数的图象经过点 P 1 ( - 1 , 1 )

(1)点 P 1 旋转后,得到的点 P 1 ' 的坐标为   ( 1 , 3 )  

(2)若点 P ' 的运动轨迹经过点 P 2 ' ( 2 , 1 ) ,求原一次函数的表达式.

【深入感悟】

如图2,设 A ( 0 , 0 ) α = 45 ° ,点 P 是反比例函数 y = - 1 x ( x < 0 ) 的图象上的动点,过点 P ' 作二、四象限角平分线的垂线,垂足为 M ,求 ΔOMP ' 的面积.

【灵活运用】

如图3,设 A ( 1 , - 3 ) α = 60 ° ,点 P 是二次函数 y = 1 2 x 2 + 2 3 x + 7 图象上的动点,已知点 B ( 2 , 0 ) C ( 3 , 0 ) ,试探究 ΔBCP ' 的面积是否有最小值?若有,求出该最小值;若没有,请说明理由.

来源:2021年江苏省盐城市中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学二次函数的最值解答题