如图,抛物线 与 轴交于点 和点 (点 在原点的左侧,点 在原点的右侧),与 轴交于点 , .
(1)求该抛物线的函数解析式.
(2)如图1,连接 ,点 是直线 上方抛物线上的点,连接 , . 交 于点 ,当 时,求点 的坐标.
(3)如图2,点 的坐标为 ,点 是抛物线上的点,连接 , , 形成的 中,是否存在点 ,使 或 等于 ?若存在,请直接写出符合条件的点 的坐标;若不存在,请说明理由.
如图1,抛物线 与 轴的负半轴交于点 ,与 轴交于点 ,顶点为 , 轴于点 .
(1)求抛物线的解析式;
(2)连接 ,在 轴下方的抛物线上存在点 , 与 的交点 平分 ,求点 的坐标;
(3)将线段 和 绕点 同时顺时针旋转相同的角度,得到线段 , ,直线 , 相交于点 .
①如图2,设 与 轴交于点 ,线段 与 交于点 ,求 的值;
②连接 , 的长随线段 , 的旋转而发生变化,请直接写出线段 长度的取值范围.
如图,已知二次函数 的图象与 轴相交于不同的两点 , , , ,且 ,
(1)若抛物线的对称轴为 ,求 的值;
(2)若 ,求 的取值范围;
(3)若该抛物线与 轴相交于点 ,连接 ,且 ,抛物线的对称轴 与 轴相交于点 ,点 是直线 上的一点,点 的纵坐标为 ,连接 ,满足 ,求该二次函数的解析式.
如图,已知二次函数 , 为实数)的图象过点 ,一次函数 , , 为实数)的图象 经过点 .
(1)求 值并写出二次函数表达式;
(2)求 值;
(3)设直线 与二次函数图象交于 , 两点,过 作 垂直 轴于点 ,试证明: ;
(4)在(3)的条件下,请判断以线段 为直径的圆与 轴的位置关系,并说明理由.
已知抛物线 的图象经过坐标原点 ,且与 轴另一交点为 , .
(1) 求抛物线 的解析式;
(2) 如图 1 ,直线 与抛物线 相交于点 , 和点 , (点 在第二象限) ,求 的值 (用 含 的式子表示) ;
(3) 在 (2) 中, 若 ,设点 是点 关于原点 的对称点, 如图 2 .
①判断△ 的形状, 并说明理由;
②平面内是否存在点 ,使得以点 、 、 、 为顶点的四边形是菱形?若存在, 求出点 的坐标;若不存在, 请说明理由 .
如图1,经过原点 的抛物线 、 为常数, 与 轴相交于另一点 .直线 在第一象限内和此抛物线相交于点 ,与抛物线的对称轴相交于点 .
(1)求抛物线的解析式;
(2)在 轴上找一点 ,使以点 、 、 为顶点的三角形与以点 、 、 为顶点的三角形相似,求满足条件的点 的坐标;
(3)直线 沿着 轴向右平移得到直线 , 与线段 相交于点 ,与 轴下方的抛物线相交于点 ,过点 作 轴于点 .把 沿直线 折叠,当点 恰好落在抛物线上时(图 ,求直线 的解析式;
(4)在(3)问的条件下(图 ,直线 与 轴相交于点 ,把 绕点 顺时针旋转 得到△ ,点 为直线 上的动点.当△ 为等腰三角形时,求满足条件的点 的坐标.
如图所示,将二次函数 的图象沿 轴翻折,然后向右平移1个单位,再向上平移4个单位,得到二次函数 的图象.函数 的图象的顶点为点 .函数 的图象的顶点为点 ,和 轴的交点为点 , (点 位于点 的左侧).
(1)求函数 的解析式;
(2)从点 , , 三个点中任取两个点和点 构造三角形,求构造的三角形是等腰三角形的概率;
(3)若点 是线段 上的动点,点 是 三边上的动点,是否存在以 为斜边的 ,使 的面积为 面积的 ?若存在,求 的值;若不存在,请说明理由.
如图,抛物线 与两坐标轴相交于点 、 、 , 是抛物线的顶点, 是线段 的中点.
(1)求抛物线的解析式,并写出 点的坐标;
(2) 是抛物线上的动点:
①当 , 时,求 的面积的最大值;
②当 时,求点 的坐标.
如图,在平面直角坐标系中,抛物线 与 轴交于 , 两点,与 轴交于点 ,点 是该抛物线的顶点.
(1)求抛物线的解析式和直线 的解析式;
(2)请在 轴上找一点 ,使 的周长最小,求出点 的坐标;
(3)试探究:在拋物线上是否存在点 ,使以点 , , 为顶点, 为直角边的三角形是直角三角形?若存在,请求出符合条件的点 的坐标;若不存在,请说明理由.
如图,抛物线 与 轴交于 , 两点(点 在点 左侧),与 轴交于点 ,点 是抛物线上的一个动点,且位于第四象限,连接 、 、 、 ,延长 交 轴于点 .
(1)若 为等腰直角三角形,求 的值;
(2)若对任意 , 、 两点总关于原点对称,求点 的坐标(用含 的式子表示);
(3)当点 运动到某一位置时,恰好使得 ,且点 为线段 的中点,此时对于该抛物线上任意一点 , 总有 成立,求实数 的最小值.
已知抛物线 的顶点为 ,与 轴的交点为 .
(1)求 的解析式;
(2)若直线 与 仅有唯一的交点,求 的值;
(3)若抛物线 关于 轴对称的抛物线记作 ,平行于 轴的直线记作 .试结合图形回答:当 为何值时, 与 和 共有:①两个交点;②三个交点;③四个交点;
(4)若 与 轴正半轴交点记作 ,试在 轴上求点 ,使 为等腰三角形.
如图,抛物线 经过点 , ,直线 交 轴于点 ,且与抛物线交于 , 两点, 为抛物线上一动点(不与 , 重合).
(1)求抛物线的解析式;
(2)当点 在直线 下方时,过点 作 轴交 于点 , 轴交 于点 ,求 的最大值.
(3)设 为直线 上的点,以 , , , 为顶点的四边形能否构成平行四边形?若能,求出点 的坐标;若不能,请说明理由.
如图所示,顶点为 , 的抛物线 过点 .
(1)求抛物线的解析式;
(2)点 是抛物线与 轴的交点(不与点 重合),点 是抛物线与 轴的交点,点 是直线 上一点(处于 轴下方),点 是反比例函数 图象上一点,若以点 , , , 为顶点的四边形是菱形,求 的值.
如图,抛物线 与 轴交于两点 和 ,与 轴交于点 ,动点 沿 的边 以每秒2个单位长度的速度由起点 向终点 运动,过点 作 轴的垂线,交 的另一边于点 ,将 沿 折叠,使点 落在点 处,设点 的运动时间为 秒.
(1)求抛物线的解析式和对称轴;
(2)是否存在某一时刻 ,使得 为直角三角形?若存在,求出 的值;若不存在,请说明理由;
(3)设四边形 的面积为 ,求 关于 的函数表达式.
如图1,在平面直角坐标系中,已知抛物线 与 轴交于 , 两点,与 轴交于点 .
(1)求抛物线的函数表达式;
(2)若点 是 轴上的一点,且以 , , 为顶点的三角形与 相似,求点 的坐标;
(3)如图2, 轴与抛物线相交于点 ,点 是直线 下方抛物线上的动点,过点 且与 轴平行的直线与 , 分别相交于点 , ,试探究当点 运动到何处时,四边形 的面积最大,求点 的坐标及最大面积;
(4)若点 为抛物线的顶点,点 是该抛物线上的一点,在 轴, 轴上分别找点 , ,使四边形 的周长最小,求出点 , 的坐标.
试题篮
()