优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 待定系数法求二次函数解析式
初中数学

如图1,在平面直角坐标系中,直线轴,轴分别交于两点,抛物线经过两点,与轴的另一交点为

(1)求抛物线解析式及点坐标;

(2)若点轴下方抛物线上一动点,连接,当点运动到某一位置时,四边形面积最大,求此时点的坐标及四边形的面积;

(3)如图2,若点是半径为2的上一动点,连接,当点运动到某一位置时,的值最小,请求出这个最小值,并说明理由.

来源:2019年山东省日照市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,抛物线轴交于点,点,与轴交于点,连接.又已知位于轴右侧且垂直于轴的动直线,沿轴正方向从运动到(不含点和点),且分别交抛物线、线段以及轴于点

(1)求抛物线的表达式;

(2)连接,当直线运动时,求使得相似的点的坐标;

(3)作,垂足为,当直线运动时,求面积的最大值.

来源:2019年山东省聊城市中考数学试卷
  • 题型:未知
  • 难度:未知

如图1,抛物线经过点两点,是其顶点,将抛物线绕点旋转,得到新的抛物线

(1)求抛物线的函数解析式及顶点的坐标;

(2)如图2,直线经过点是抛物线上的一点,设点的横坐标为,连接并延长,交抛物线于点,交直线于点,若,求的值;

(3)如图3,在(2)的条件下,连接,在直线下方的抛物线上是否存在点,使得?若存在,求出点的横坐标;若不存在,请说明理由.

来源:2019年山东省济南市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,抛物线经过三点.

(1)求抛物线的函数表达式;

(2)如图1,为抛物线上在第二象限内的一点,若面积为3,求点的坐标;

(3)如图2,为抛物线的顶点,在线段上是否存在点,使得以为顶点的三角形与相似?若存在,求点的坐标;若不存在,请说明理由.

来源:2019年山东省济南市莱芜区中考数学试卷
  • 题型:未知
  • 难度:未知

如图,抛物线与轴交于两点,与轴交于点,点的坐标是为抛物线上的一个动点,过点轴于点,交直线于点,抛物线的对称轴是直线

(1)求抛物线的函数表达式;

(2)若点在第二象限内,且,求的面积.

(3)在(2)的条件下,若为直线上一点,在轴的上方,是否存在点,使是以为腰的等腰三角形?若存在,求出点的坐标;若不存在,请说明理由.

来源:2019年山东省菏泽市中考数学试卷
  • 题型:未知
  • 难度:未知

已知抛物线经过点,与轴交于点

(1)求这条抛物线的解析式;

(2)如图1,点是第三象限内抛物线上的一个动点,当四边形的面积最大时,求点的坐标;

(3)如图2,线段的垂直平分线交轴于点,垂足为为抛物线的顶点,在直线上是否存在一点,使的周长最小?若存在,求出点的坐标;若不存在,请说明理由.

来源:2019年山东省东营市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,抛物线轴交于两点,与轴交于点,且

(1)求抛物线的解析式;

(2)若是抛物线上的两点,当时,均有,求的取值范围;

(3)抛物线上一点,直线轴交于点,动点在线段上,当时,求点的坐标.

来源:2019年山东省德州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,已知直线与抛物线相交于点和点两点.

(1)求抛物线函数表达式;

(2)若点是位于直线上方抛物线上的一动点,以为相邻的两边作平行四边形,当平行四边形的面积最大时,求此时平行四边形的面积及点的坐标;

(3)在抛物线的对称轴上是否存在定点,使抛物线上任意一点到点的距离等于到直线的距离?若存在,求出定点的坐标;若不存在,请说明理由.

来源:2019年四川省自贡市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,抛物线过点,且与直线交于两点,点的坐标为

(1)求抛物线的解析式;

(2)点为抛物线上位于直线上方的一点,过点轴交直线于点,点为对称轴上一动点,当线段的长度最大时,求的最小值;

(3)设点为抛物线的顶点,在轴上是否存在点,使?若存在,求点的坐标;若不存在,请说明理由.

来源:2019年四川省资阳市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,已知抛物线与直线都经过两点,该抛物线的顶点为

(1)求此抛物线和直线的解析式;

(2)设直线与该抛物线的对称轴交于点,在射线上是否存在一点,过轴的垂线交抛物线于点,使点是平行四边形的四个顶点?若存在,求点的坐标;若不存在,请说明理由;

(3)设点是直线下方抛物线上的一动点,当面积最大时,求点的坐标,并求面积的最大值.

来源:2019年四川省宜宾市中考数学试卷
  • 题型:未知
  • 难度:未知

已知二次函数的图象过点,点不重合)是图象上的一点,直线过点且平行于轴.于点,点

(1)求二次函数的解析式;

(2)求证:点在线段的中垂线上;

(3)设直线交二次函数的图象于另一点于点,线段的中垂线交于点,求的值;

(4)试判断点与以线段为直径的圆的位置关系.

来源:2019年四川省雅安市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,矩形的顶点落在坐标原点,点、点分别位于轴,轴的正半轴,为线段上一点,将沿翻折,点恰好落在对角线上的点处,反比例函数经过点.二次函数的图象经过三点,则该二次函数的解析式为  .(填一般式)

来源:2019年四川省遂宁市中考数学试卷
  • 题型:未知
  • 难度:未知

已知抛物线的对称轴为直线,其图象与轴相交于两点,与轴相交于点

(1)求的值;

(2)直线轴相交于点

①如图1,若轴,且与线段及抛物线分别相交于点,点关于直线的对称点为点,求四边形面积的最大值;

②如图2,若直线与线段相交于点,当时,求直线的表达式.

来源:2019年四川省攀枝花市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,抛物线轴交于点,点,且

(1)求抛物线的解析式;

(2)点在抛物线上,且,求点的坐标;

(3)抛物线上两点,点的横坐标为,点的横坐标为.点是抛物线上之间的动点,过点轴的平行线交于点

①求的最大值;

②点关于点的对称点为,当为何值时,四边形为矩形.

来源:2019年四川省南充市中考数学试卷
  • 题型:未知
  • 难度:未知

在平面直角坐标系中,将二次函数的图象向右平移1个单位,再向下平移2个单位,得到如图所示的抛物线,该抛物线与轴交于点(点在点的左侧),,经过点的一次函数的图象与轴正半轴交于点,且与抛物线的另一个交点为的面积为5.

(1)求抛物线和一次函数的解析式;

(2)抛物线上的动点在一次函数的图象下方,求面积的最大值,并求出此时点的坐标;

(3)若点轴上任意一点,在(2)的结论下,求的最小值.

来源:2019年四川省绵阳市中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学待定系数法求二次函数解析式试题