优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 待定系数法求二次函数解析式
初中数学

如图,抛物线过点,矩形的边在线段上(点在点的左侧),点在抛物线上,的平分线于点,点的中点,已知,且

(1)求抛物线的解析式;

(2)分别为轴,轴上的动点,顺次连接构成四边形,求四边形周长的最小值;

(3)在轴下方且在抛物线上是否存在点,使边上的高为?若存在,求出点的坐标;若不存在,请说明理由;

(4)矩形不动,将抛物线向右平移,当平移后的抛物线与矩形的边有两个交点,且直线平分矩形的面积时,求抛物线平移的距离.

来源:2019年湖南省湘西州中考数学试卷
  • 题型:未知
  • 难度:未知

如图一,抛物线三点.

(1)求该抛物线的解析式;

(2)两点均在该抛物线上,若,求点横坐标的取值范围;

(3)如图二,过点轴的平行线交抛物线于点,该抛物线的对称轴与轴交于点,连结,点为线段的中点,点分别为直线上的动点,求周长的最小值.

来源:2019年湖南省湘潭市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,二次函数的图象过原点,与轴的另一个交点为

(1)求该二次函数的解析式;

(2)在轴上方作轴的平行线,交二次函数图象于两点,过两点分别作轴的垂线,垂足分别为点、点.当矩形为正方形时,求的值;

(3)在(2)的条件下,动点从点出发沿射线以每秒1个单位长度匀速运动,同时动点以相同的速度从点出发沿线段匀速运动,到达点时立即原速返回,当动点返回到点时,两点同时停止运动,设运动时间为.过点轴作垂线,交抛物线于点,交直线于点,问:以四点为顶点构成的四边形能否是平行四边形.若能,请求出的值;若不能,请说明理由.

来源:2019年湖南省邵阳市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,抛物线轴交于点,点,与轴交于点,且过点.点是抛物线上的动点.

(1)求抛物线的解析式;

(2)当点在直线下方时,求面积的最大值.

(3)直线与线段相交于点,当相似时,求点的坐标.

来源:2019年湖南省娄底市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在直角坐标系中有为坐标原点,,将此三角形绕原点顺时针旋转,得到,二次函数的图象刚好经过三点.

(1)求二次函数的解析式及顶点的坐标;

(2)过定点的直线与二次函数图象相交于两点.

①若,求的值;

②证明:无论为何值,恒为直角三角形;

③当直线绕着定点旋转时,外接圆圆心在一条抛物线上运动,直接写出该抛物线的表达式.

来源:2019年湖南省怀化市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,二次函数的图象与轴交于点和点,与轴交于点,以为边在轴上方作正方形,点轴上一动点,连接,过点的垂线与轴交于点

(1)求该抛物线的函数关系表达式;

(2)当点在线段(点不与重合)上运动至何处时,线段的长有最大值?并求出这个最大值;

(3)在第四象限的抛物线上任取一点,连接.请问:的面积是否存在最大值?若存在,求出此时点的坐标;若不存在,请说明理由.

来源:2019年湖南省衡阳市中考数学试卷
  • 题型:未知
  • 难度:未知

已知抛物线轴分别交于两点,与轴交于点

(1)求抛物线的表达式及顶点的坐标;

(2)点是线段上一个动点.

①如图1,设,当为何值时,

②如图2,以为顶点的三角形是否与相似?若相似,求出点的坐标;若不相似,请说明理由.

来源:2019年湖南省郴州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,已知二次函数图象的顶点坐标为,与坐标轴交于三点,且点的坐标为

(1)求二次函数的解析式;

(2)在二次函数图象位于轴上方部分有两个动点,且点在点的左侧,过轴的垂线交轴于点两点,当四边形为矩形时,求该矩形周长的最大值;

(3)当矩形的周长最大时,能否在二次函数图象上找到一点,使的面积是矩形面积的?若存在,求出该点的横坐标;若不存在,请说明理由.

来源:2019年湖南省常德市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,顶点为的抛物线轴交于两点,与轴交于点

(1)求这条抛物线对应的函数表达式;

(2)问在轴上是否存在一点,使得为直角三角形?若存在,求出点的坐标;若不存在,说明理由.

(3)若在第一象限的抛物线下方有一动点,满足,过轴于点,设的内心为,试求的最小值.

来源:2019年山东省淄博市中考数学试卷(a卷)
  • 题型:未知
  • 难度:未知

已知抛物线的对称轴是直线,与轴相交于两点(点在点右侧),与轴交于点

(1)求抛物线的解析式和两点的坐标;

(2)如图1,若点是抛物线上两点之间的一个动点(不与重合),是否存在点,使四边形的面积最大?若存在,求点的坐标及四边形面积的最大值;若不存在,请说明理由;

(3)如图2,若点是抛物线上任意一点,过点轴的平行线,交直线于点,当时,求点的坐标.

来源:2019年山东省枣庄市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,顶点为的抛物线轴交于两点,与轴交于点,过点轴交抛物线于另一点,作轴,垂足为点,双曲线经过点,连接

(1)求抛物线的表达式;

(2)点分别是轴,轴上的两点,当以为顶点的四边形周长最小时,求出点的坐标;

(3)动点从点出发,以每秒1个单位长度的速度沿方向运动,运动时间为秒,当为何值时,的度数最大?(请直接写出结果)

来源:2019年山东省烟台市中考数学试卷
  • 题型:未知
  • 难度:未知

已知二次函数 y = a x 2 + bx + c y x 的部分对应值如表:

x

- 1

0

2

3

4

y

5

0

- 4

- 3

0

下列结论:①抛物线的开口向上;②抛物线的对称轴为直线 x = 2 ;③当 0 < x < 4 时, y > 0 ;④抛物线与 x 轴的两个交点间的距离是4;⑤若 A ( x 1 2 ) B ( x 2 3 ) 是抛物线上两点,则 x 1 < x 2 ,其中正确的个数是 (    )

A.

2

B.

3

C.

4

D.

5

来源:2019年山东省烟台市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,为坐标原点,点,点的中线轴交于点,且经过三点.

(1)求圆心的坐标;

(2)若直线相切于点,交轴于点,求直线的函数表达式;

(3)在(2)的条件下,在过点且以圆心为顶点的抛物线上有一动点,过点轴,交直线于点.若以为半径的与直线相交于另一点.当时,求点的坐标.

来源:2019年山东省潍坊市中考数学试卷
  • 题型:未知
  • 难度:未知

在画二次函数的图象时,甲写错了一次项的系数,列表如下

0

1

2

3

6

3

2

3

6

乙写错了常数项,列表如下:

0

1

2

3

2

7

14

通过上述信息,解决以下问题:

(1)求原二次函数的表达式;

(2)对于二次函数,当  时,的值随的值增大而增大;

(3)若关于的方程有两个不相等的实数根,求的取值范围.

来源:2019年山东省威海市中考数学试卷
  • 题型:未知
  • 难度:未知

若二次函数的图象与轴、轴分别交于点,且过点

(1)求二次函数表达式;

(2)若点为抛物线上第一象限内的点,且,求点的坐标;

(3)在抛物线上下方)是否存在点,使?若存在,求出点轴的距离;若不存在,请说明理由.

来源:2019年山东省泰安市中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学待定系数法求二次函数解析式试题