优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 待定系数法求二次函数解析式
初中数学

已知抛物线轴相交于两点,并与轴相交于点.抛物线关于坐标原点对称,点上的对应点分别为

(1)求抛物线的函数表达式;

(2)在抛物线上是否存在点,使得△的面积等于△的面积?若存在,求点的坐标;若不存在,请说明理由.

来源:2018年陕西省中考数学试卷(副卷)
  • 题型:未知
  • 难度:未知

在同一直角坐标系中,抛物线与抛物线关于轴对称,轴交于两点,其中点在点的左侧.

(1)求抛物线的函数表达式;

(2)求两点的坐标;

(3)在抛物线上是否存在一点,在抛物线上是否存在一点,使得以为边,且以四点为顶点的四边形是平行四边形?若存在,求出两点的坐标;若不存在,请说明理由.

来源:2017年陕西省中考数学试卷
  • 题型:未知
  • 难度:未知

如图,已知抛物线轴交于两点.与轴交于点.且

(1)求抛物线的函数表达式;

(2)在抛物线的对称轴上是否存在一点,使周长最小?若存在,求出点的坐标;若不存在,请说明理由.

(3)连接,在抛物线上是否存在一点,使?若存在,求出点的坐标;若不存在,请说明理由.

来源:2017年陕西省中考数学试卷(副卷)
  • 题型:未知
  • 难度:未知

在平面直角坐标系中,点 O 为坐标原点,抛物线 y = a x 2 + bx + 5 经过点 M ( 1 , 3 ) N ( 3 , 5 )

(1)试判断该抛物线与 x 轴交点的情况;

(2)平移这条抛物线,使平移后的抛物线经过点 A ( - 2 , 0 ) ,且与 y 轴交于点 B ,同时满足以 A O B 为顶点的三角形是等腰直角三角形,请你写出平移过程,并说明理由.

来源:2016年陕西省中考数学试卷
  • 题型:未知
  • 难度:未知

如图所示,在平面直角坐标系中, O 为坐标原点,且 ΔAOB 是等腰直角三角形, AOB = 90 ° ,点 A ( 2 , 1 )

(1)求点 B 的坐标;

(2)求经过 A O B 三点的抛物线的函数表达式;

(3)在(2)所求的抛物线上,是否存在一点 P ,使四边形 ABOP 的面积最大?若存在,求出点 P 的坐标;若不存在,请说明理由.

来源:2016年陕西省中考数学试卷(副卷)
  • 题型:未知
  • 难度:未知

已知抛物线

(1)当时,求抛物线与轴的交点坐标及对称轴;

(2)①试说明无论为何值,抛物线一定经过两个定点,并求出这两个定点的坐标;

②将抛物线沿这两个定点所在直线翻折,得到抛物线,直接写出的表达式;

(3)若(2)中抛物线的顶点到轴的距离为2,求的值.

来源:2017年江西省中考数学试卷
  • 题型:未知
  • 难度:未知

如图,抛物线轴于两点,交轴于点.直线经过点

(1)求抛物线的解析式;

(2)点是抛物线上一动点,过点轴的垂线,交直线于点,设点的横坐标为

①当是直角三角形时,求点的坐标;

②作点关于点的对称点,则平面内存在直线,使点到该直线的距离都相等.当点轴右侧的抛物线上,且与点不重合时,请直接写出直线的解析式.可用含的式子表示)

来源:2019年河南省中考数学试卷
  • 题型:未知
  • 难度:未知

如图,抛物线轴于两点,交轴于点.直线经过点

(1)求抛物线的解析式;

(2)过点的直线交直线于点

①当时,过抛物线上一动点(不与点重合),作直线的平行线交直线于点,若以点为顶点的四边形是平行四边形,求点的横坐标;

②连接,当直线与直线的夹角等于的2倍时,请直接写出点的坐标.

来源:2018年河南省中考数学试卷
  • 题型:未知
  • 难度:未知

如图,抛物线轴于两点,交轴于点,顶点的坐标为,对称轴交轴于点,直线轴于点,交轴于点,交抛物线的对称轴于点

(1)求出的值.

(2)点为抛物线对称轴上一个动点,若是以为腰的等腰三角形时,请求出点的坐标.

(3)点为抛物线上一个动点,当点关于直线的对称点恰好落在轴上时,请直接写出此时点的坐标.

来源:2018年河南省中考数学试卷(备用卷)
  • 题型:未知
  • 难度:未知

如图,直线轴交于点,与轴交于点,抛物线经过点

(1)求点的坐标和抛物线的解析式;

(2)轴上一动点,过点且垂直于轴的直线与直线及抛物线分别交于点

①点在线段上运动,若以为顶点的三角形与相似,求点的坐标;

②点轴上自由运动,若三个点中恰有一点是其它两点所连线段的中点(三点重合除外),则称三点为“共谐点”.请直接写出使得三点成为“共谐点”的的值.

来源:2017年河南省中考数学试卷
  • 题型:未知
  • 难度:未知

如图1,在平面直角坐标系中,抛物线与直线交于点和点,与轴交于点

(1)求的值及抛物线的解析式;

(2)在图1中,把平移,始终保持点的对应点在抛物线上,点的对应点分别为,连接,若点恰好在直线上,求线段的长度;

(3)如图2,在抛物线上是否存在点(不与点重合),使的面积相等?若存在,直接写出点的坐标;若不存在,请说明理由.

来源:2017年河南省中考数学试卷(备用卷)
  • 题型:未知
  • 难度:未知

如图1,直线 y = - 4 3 x + n x 轴于点 A ,交 y 轴于点 C ( 0 , 4 ) ,抛物线 y = 2 3 x 2 + bx + c 经过点 A ,交 y 轴于点 B ( 0 , - 2 ) .点 P 为抛物线上一个动点,过点 P x 轴的垂线 PD ,过点 B BD PD 于点 D ,连接 PB ,设点 P 的横坐标为 m

(1)求抛物线的解析式;

(2)当 ΔBDP 为等腰直角三角形时,求线段 PD 的长;

(3)如图2,将 ΔBDP 绕点 B 逆时针旋转,得到△ BD ' P ' ,且旋转角 PBP ' = OAC ,当点 P 的对应点 P ' 落在坐标轴上时,请直接写出点 P 的坐标.

来源:2016年河南省中考数学试卷
  • 题型:未知
  • 难度:未知

已知是抛物线上两点,该抛物线的顶点坐标是  

来源:2016年河南省中考数学试卷
  • 题型:未知
  • 难度:未知

抛物线 y = a x 2 + bx + 2 经过 A ( - 1 , 0 ) C ( 3 , 0 ) ,交 y 轴于点 B

(1)求抛物线的解析式;

(2)如图1,点 P 为直线 BC 上方抛物线上一个动点,连接 PB PC .设 ΔPBC 的面积为 S ,点 P 的横坐标为 m ,试求 S 关于 m 的函数解析式,并求出 S 的最大值;

(3)如图2,连接 AB ,点 M ( 2 , 1 ) 为抛物线内一点,在抛物线上是否存在点 Q ,使直线 QM y 轴相交所成的锐角等于 OAB ?若存在,请直接写出点 Q 的横坐标;若不存在,请说明理由.

来源:2016年河南省中考数学试卷(备用卷)
  • 题型:未知
  • 难度:未知

如图1,过点的抛物线与直线交于点.点是线段上一动点,过点轴的垂线,垂足为点,交抛物线于点.设的面积为,点的横坐标为

(1)请直接写出的值及抛物线的解析式.

(2)为探究最大时点的位置,甲、乙两同学结合图形给出如下解析:

甲:借助的长与三角形面积公式,求出关于的函数关系式,可确定点的位置.

乙:当点运动到点或点时,的值可看作0,则当点运动到中点时,最大,即最大时,点的中点.

请参考甲的方法求出最大时点的坐标,进而判断乙的猜想是否正确,并说明理由.

(3)拓展探究:如图2,直线与任意抛物线相交于两点,是线段上的一个动点,过点作抛物线对称轴的平行线,交该抛物线于点.当的面积最大时,点一定是线段的中点吗?试作出判断并说明理由.

来源:2015年河南省中考数学试卷(备用卷)
  • 题型:未知
  • 难度:未知

初中数学待定系数法求二次函数解析式试题