在直角坐标系中,设函数 , 是常数, .
(1)若该函数的图象经过 和 两点,求函数的表达式,并写出函数图象的顶点坐标;
(2)写出一组 , 的值,使函数 的图象与 轴有两个不同的交点,并说明理由.
(3)已知 ,当 , , 是实数, 时,该函数对应的函数值分别为 , .若 ,求证: .
已知抛物线 .
(1)通过配方可以将其化成顶点式为 ,根据该抛物线在对称轴两侧从左到右图象的特征,可以判断,当顶点在 轴 (填上方或下方),即 0(填大于或小于)时,该抛物线与 轴必有两个交点;
(2)若抛物线上存在两点 , , , ,分布在 轴的两侧,则抛物线顶点必在 轴下方,请你结合 、 两点在抛物线上的可能位置,根据二次函数的性质,对这个结论的正确性给以说明;(为了便于说明,不妨设 且都不等于顶点的横坐标;另如果需要借助图象辅助说明,可自己画出简单示意图)
(3)根据二次函数(1)(2)结论,求证:当 , 时, .
如图,二次函数 是实数,且 的图象与 轴交于 、 两点(点 在点 的左侧),其对称轴与 轴交于点 .已知点 位于第一象限,且在对称轴上, ,点 在 轴的正半轴上, ,连接 并延长交 轴于点 ,连接 .
(1)求 、 、 三点的坐标(用数字或含 的式子表示);
(2)已知点 在抛物线的对称轴上,当 的周长的最小值等于 时,求 的值.
已知二次函数 的图象经过 , 两点.
(1)求 的值;
(2)当 时,该函数的图象的顶点的纵坐标的最小值是 1 .
(3)设 是该函数的图象与 轴的一个公共点.当 时,结合函数的图象,直接写出 的取值范围.
已知二次函数 .
(1)若 , ,求方程 的根的判别式的值;
(2)如图所示,该二次函数的图象与 轴交于点 , 、 , ,且 ,与 轴的负半轴交于点 ,点 在线段 上,连接 、 ,满足 , .
①求证: ;
②连接 ,过点 作 于点 ,点 在 轴的负半轴上,连接 ,且 ,求 的值.
在平面直角坐标系中,如果一个点的横坐标与纵坐标相等,则称该点为"雁点".例如 , 都是"雁点".
(1)求函数 图象上的"雁点"坐标;
(2)若抛物线 上有且只有一个"雁点" ,该抛物线与 轴交于 、 两点(点 在点 的左侧).当 时.
①求 的取值范围;
②求 的度数;
(3)如图,抛物线 与 轴交于 、 两点(点 在点 的左侧), 是抛物线 上一点,连接 ,以点 为直角顶点,构造等腰 ,是否存在点 ,使点 恰好为"雁点"?若存在,求出点 的坐标;若不存在,请说明理由.
在平面直角坐标系中,抛物线 与 轴交于点 和点 , ,顶点坐标记为 , .抛物线 的顶点坐标记为 , .
(1)写出 点坐标;
(2)求 , 的值(用含 的代数式表示)
(3)当 时,探究 与 的大小关系;
(4)经过点 和点 的直线与抛物线 , 的公共点恰好为3个不同点时,求 的值.
抛物线 交 轴于 , 两点 在 的左边).
(1) 的顶点 在 轴的正半轴上,顶点 在 轴右侧的抛物线上;
①如图(1),若点 的坐标是 ,点 的横坐标是 ,直接写出点 , 的坐标.
②如图(2),若点 在抛物线上,且 的面积是12,求点 的坐标.
(2)如图(3), 是原点 关于抛物线顶点的对称点,不平行 轴的直线 分别交线段 , (不含端点)于 , 两点.若直线 与抛物线只有一个公共点,求证: 的值是定值.
已知抛物线 与 轴只有一个公共点.
(1)若抛物线过点 ,求 的最小值;
(2)已知点 , , 中恰有两点在抛物线上.
①求抛物线的解析式;
②设直线 与抛物线交于 , 两点,点 在直线 上,且 ,过点 且与 轴垂直的直线分别交抛物线和 于点 , .求证: 与 的面积相等.
如图,在平面直角坐标系中,二次函数 图象的顶点是 ,与 轴交于 , 两点,与 轴交于点 .点 的坐标是 .
(1)求 , 两点的坐标,并根据图象直接写出当 时 的取值范围.
(2)平移该二次函数的图象,使点 恰好落在点 的位置上,求平移后图象所对应的二次函数的表达式.
如图,在平面直角坐标系中,二次函数 的图象与 轴交于 、 两点,与 轴交于点 ,其顶点为 ,连接 、 、 ,过点 作 轴的垂线 .
(1)求点 , 的坐标;
(2)直线 上是否存在点 ,使 的面积等于 的面积的2倍?若存在,求出点 的坐标;若不存在,请说明理由.
平面直角坐标系 中,二次函数 的图象与 轴有两个交点.
(1)当 时,求二次函数的图象与 轴交点的坐标;
(2)过点 作直线 轴,二次函数图象的顶点 在直线 与 轴之间(不包含点 在直线 上),求 的范围;
(3)在(2)的条件下,设二次函数图象的对称轴与直线 相交于点 ,求 的面积最大时 的值.
如图,在平面直角坐标系中,二次函数 的图象与 轴交于点 、 (点 在点 的左侧),与 轴交于点 ,过其顶点 作直线 轴,垂足为点 ,连接 、 .
(1)求点 、 、 的坐标;
(2)若 与 相似,求 的值;
(3)点 、 、 、 能否在同一个圆上?若能,求出 的值;若不能,请说明理由.
如图,已知抛物线 与 轴交于点 , (点 位于点 的左侧), 为顶点,直线 经过点 ,与 轴交于点 .
(1)求线段 的长;
(2)平移该抛物线得到一条新抛物线,设新抛物线的顶点为 .若新抛物线经过点 ,并且新抛物线的顶点和原抛物线的顶点的连线 平行于直线 ,求新抛物线对应的函数表达式.
试题篮
()