已知:如图,在平面直角坐标系中,点 , ,过点 的直线 与 轴正半轴交于点 ,与直线 交于点 .
(1)当 且 时,求 的长度;
(2)若点 的坐标是 ,且 ,求经过点 且以点 为顶点的抛物线的函数表达式.
如图,在直角坐标系 中,菱形 的边 在 轴正半轴上,点 , 在第一象限, ,边长 .点 从原点 出发沿 轴正半轴以每秒1个单位长的速度作匀速运动,点 从 出发沿边 以每秒2个单位长的速度作匀速运动,过点 作直线 垂直于 轴并交折线 于 ,交对角线 于 ,点 和点 同时出发,分别沿各自路线运动,点 运动到原点 时, 和 两点同时停止运动.
(1)当 时,求线段 的长;
(2)求 为何值时,点 与 重合;
(3)设 的面积为 ,求 与 的函数关系式及 的取值范围.
如图,在平面直角坐标系中,四边形 的边 在 轴上,点 在 轴的负半轴上,直线 ,且 , ,将经过 、 两点的直线 向右平移,平移后的直线与 轴交于点 ,与直线 交于点 ,设 的长为 .
(1)四边形 的面积为 ;
(2)设四边形 被直线 扫过的面积(阴影部分)为 ,请直接写出 关于 的函数解析式;
(3)当 时,直线 上有一动点 ,作 直线 于点 ,交 轴于点 ,将 沿直线 折叠得到 ,探究:是否存在点 ,使点 恰好落在坐标轴上?若存在,请求出点 的坐标;若不存在,请说明理由.
某农作物的生长率与温度有如下关系:如图1,当时可近似用函数刻画;当时可近似用函数刻画.
(1)求的值.
(2)按照经验,该作物提前上市的天数(天与生长率满足函数关系:
生长率 |
0.2 |
0.25 |
0.3 |
0.35 |
提前上市的天数(天 |
0 |
5 |
10 |
15 |
①请运用已学的知识,求关于的函数表达式;
②请用含的代数式表示.
(3)天气寒冷,大棚加温可改变农作物生长速度.在(2)的条件下,原计划大棚恒温时,每天的成本为200元,该作物30天后上市时,根据市场调查:每提前一天上市售出(一次售完),销售额可增加600元.因此给大棚继续加温,加温后每天成本(元与大棚温度之间的关系如图2.问提前上市多少天时增加的利润最大?并求这个最大利润(农作物上市售出后大棚暂停使用).
试题篮
()