优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 二次函数的应用
初中数学

某品牌汽车销售店销售某种品牌的汽车,每辆汽车的进价16(万元).当每辆售价为22(万元)时,每月可销售4辆汽车.根据市场行情,现在决定进行降价销售.通过市场调查得到了每辆降价的费用 y 1 (万元)与月销售量 x (辆 ) ( x 4 ) 满足某种函数关系的五组对应数据如下表:

x

4

5

6

7

8

y 1

0

0.5

1

1.5

2

(1)请你根据所给材料和初中所学的函数知识写出 y 1 x 的关系式 y 1 =   

(2)每辆原售价为22万元,不考虑其它成本,降价后每月销售利润 y = (每辆原售价 - y 1 - 进价) x ,请你根据上述条件,求出月销售量 x ( x 4 ) 为多少时,销售利润最大?最大利润是多少?

来源:2021年贵州省铜仁市中考数学试卷
  • 题型:未知
  • 难度:未知

在“乡村振兴”行动中,某村办企业以 A B 两种农作物为原料开发了一种有机产品. A 原料的单价是 B 原料单价的1.5倍,若用900元收购 A 原料会比用900元收购 B 原料少 100 kg .生产该产品每盒需要 A 原料 2 kg B 原料 4 kg ,每盒还需其他成本9元.市场调查发现:该产品每盒的售价是60元时,每天可以销售500盒;每涨价1元,每天少销售10盒.

(1)求每盒产品的成本(成本 = 原料费 + 其他成本);

(2)设每盒产品的售价是 x ( x 是整数),每天的利润是 w 元,求 w 关于 x 的函数解析式(不需要写出自变量的取值范围);

(3)若每盒产品的售价不超过 a ( a 是大于60的常数,且是整数),直接写出每天的最大利润.

来源:2021年湖北省武汉市中考数学试卷
  • 题型:未知
  • 难度:未知

端午节是我国入选世界非物质文化遗产的传统节日,端午节吃粽子是中华民族的传统习俗.市场上豆沙粽的进价比猪肉粽的进价每盒便宜10元,某商家用8000元购进的猪肉粽和用6000元购进的豆沙粽盒数相同.在销售中,该商家发现猪肉粽每盒售价50元时,每天可售出100盒;每盒售价提高1元时,每天少售出2盒.

(1)求猪肉粽和豆沙粽每盒的进价;

(2)设猪肉粽每盒售价 x ( 50 x 65 ) y 表示该商家每天销售猪肉粽的利润(单位:元),求 y 关于 x 的函数解析式并求最大利润.

来源:2021年广东省中考数学试卷
  • 题型:未知
  • 难度:未知

为了实施乡村振兴战略,帮助农民增加收入,市政府大力扶持农户发展种植业,每亩土地每年发放种植补贴120元.张远村老张计划明年承租部分土地种植某种经济作物.考虑各种因素,预计明年每亩土地种植该作物的成本 y (元 ) 与种植面积 x (亩 ) 之间满足一次函数关系,且当 x = 160 时, y = 840 ;当 x = 190 时, y = 960

(1)求 y x 之间的函数关系式(不求自变量的取值范围);

(2)受区域位置的限制,老张承租土地的面积不得超过240亩.若老张明年销售该作物每亩的销售额能达到2160元,当种植面积为多少时,老张明年种植该作物的总利润最大?最大利润是多少?

(每亩种植利润 = 每亩销售额 - 每亩种植成本 + 每亩种植补贴)

来源:2021年湖北省鄂州市中考数学试卷
  • 题型:未知
  • 难度:未知

某快餐店销售 A B 两种快餐,每份利润分别为12元、8元,每天卖出份数分别为40份、80份.该店为了增加利润,准备降低每份 A 种快餐的利润,同时提高每份 B 种快餐的利润.售卖时发现,在一定范围内,每份 A 种快餐利润每降1元可多卖2份,每份 B 种快餐利润每提高1元就少卖2份.如果这两种快餐每天销售总份数不变,那么这两种快餐一天的总利润最多是  元.

来源:2021年江苏省连云港市中考数学试卷
  • 题型:未知
  • 难度:未知

如今我国的大棚(如图 1 ) 种植技术已十分成熟.小明家的菜地上有一个长为16米的蔬菜大棚,其横截面顶部为抛物线型,大棚的一端固定在离地面高1米的墙体 A 处,另一端固定在离地面高2米的墙体 B 处,现对其横截面建立如图2所示的平面直角坐标系.已知大棚上某处离地面的高度 y (米 ) 与其离墙体 A 的水平距离 x (米 ) 之间的关系满足 y = - 1 6 x 2 + bx + c ,现测得 A B 两墙体之间的水平距离为6米.

(1)直接写出 b c 的值;

(2)求大棚的最高处到地面的距离;

(3)小明的爸爸欲在大棚内种植黄瓜,需搭建高为 37 24 米的竹竿支架若干,已知大棚内可以搭建支架的土地平均每平方米需要4根竹竿,则共需要准备多少根竹竿?

来源:2021年湖北省随州市中考数学试卷
  • 题型:未知
  • 难度:未知

从喷水池喷头喷出的水珠,在空中形成一条抛物线,如图所示,在抛物线各个位置上,水珠的竖直高度 y (单位: m ) 与它距离喷头的水平距离 x (单位: m ) 之间满足函数关系式 y = - 2 x 2 + 4 x + 1 喷出水珠的最大高度是    m

来源:2021年湖北省襄阳市中考数学试卷
  • 题型:未知
  • 难度:未知

某网店销售一款市场上畅销的蒸蛋器,进价为每个40元,在销售过程中发现,这款蒸蛋器销售单价为60元时,每星期卖出100个.如果调整销售单价,每涨价1元,每星期少卖出2个,现网店决定提价销售,设销售单价为 x 元,每星期销售量为 y 个.

(1)请直接写出 y (个 ) x (元 ) 之间的函数关系式;

(2)当销售单价是多少元时,该网店每星期的销售利润是2400元?

(3)当销售单价是多少元时,该网店每星期的销售利润最大?最大利润是多少元?

来源:2021年辽宁省本溪市中考数学试卷
  • 题型:未知
  • 难度:未知

我国南宋时期数学家秦九韶曾提出利用三角形的三边求面积的公式,此公式与古希腊几何学家海伦提出的公式如出一辙,即三角形的三边长分别为 a b c ,记 p = a + b + c 2 ,则其面积 S = p ( p - a ) ( p - b ) ( p - c ) .这个公式也被称为海伦 - 秦九韶公式.若 p = 5 c = 4 ,则此三角形面积的最大值为 (    )

A.

5

B.

4

C.

2 5

D.

5

来源:2021年广东省中考数学试卷
  • 题型:未知
  • 难度:未知

某药店选购了一批消毒液,进价为每瓶10元,在销售过程中发现,每天销售量 y (瓶 ) 与每瓶售价 x (元 ) 之间存在一次函数关系(其中 10 x 21 ,且 x 为整数).当每瓶消毒液售价为12元时,每天销售量为90瓶;当每瓶消毒液售价为15元时,每天销售量为75瓶.

(1)求 y x 之间的函数关系式;

(2)设该药店销售该消毒液每天的销售利润为 w 元,当每瓶消毒液售价为多少元时,药店销售该消毒液每天销售利润最大,最大利润是多少元?

来源:2021年四川省雅安市中考数学试卷
  • 题型:未知
  • 难度:未知

某游乐场的圆形喷水池中心 O 有一雕塑 OA ,从 A 点向四周喷水,喷出的水柱为抛物线,且形状相同.如图,以水平方向为 x 轴,点 O 为原点建立直角坐标系,点 A y 轴上, x 轴上的点 C D 为水柱的落水点,水柱所在抛物线(第一象限部分)的函数表达式为 y = - 1 6 ( x - 5 ) 2 + 6

(1)求雕塑高 OA

(2)求落水点 C D 之间的距离.

(3)若需要在 OD 上的点 E 处竖立雕塑 EF OE = 10 m EF = 1 . 8 m EF OD .问:顶部 F 是否会碰到水柱?请通过计算说明.

来源:2021年浙江省金华市中考数学试卷
  • 题型:未知
  • 难度:未知

某服装店以每件30元的价格购进一批 T 恤,如果以每件40元出售,那么一个月内能售出300件,根据以往销售经验,销售单价每提高1元,销售量就会减少10件,设 T 恤的销售单价提高 x 元.

(1)服装店希望一个月内销售该种 T 恤能获得利润3360元,并且尽可能减少库存,问 T 恤的销售单价应提高多少元?

(2)当销售单价定为多少元时,该服装店一个月内销售这种 T 恤获得的利润最大?最大利润是多少元?

来源:2021年四川省遂宁市中考数学试卷
  • 题型:未知
  • 难度:未知

今年以来,我市接待的游客人数逐月增加,据统计,游玩某景区的游客人数三月份为4万人,五月份为5.76万人.

(1)求四月和五月这两个月中该景区游客人数平均每月增长百分之几;

(2)若该景区仅有 A B 两个景点,售票处出示的三种购票方式如下表所示:

购票方式

可游玩景点

A

B

A 和     B

门票价格

100元     /

80元     /

160元     /

据预测,六月份选择甲、乙、丙三种购票方式的人数分别有2万、3万和2万,并且当甲、乙两种门票价格不变时,丙种门票价格每下降1元,将有600人原计划购买甲种门票的游客和400人原计划购买乙种门票的游客改为购买丙种门票.

①若丙种门票价格下降10元,求景区六月份的门票总收入;

②问:将丙种门票价格下降多少元时,景区六月份的门票总收入有最大值?最大值是多少万元?

来源:2021年浙江省湖州市中考数学试卷
  • 题型:未知
  • 难度:未知

小聪设计奖杯,从抛物线形状上获得灵感,在平面直角坐标系中画出截面示意图,如图1,杯体 ACB 是抛物线的一部分,抛物线的顶点 C y 轴上,杯口直径 AB = 4 ,且点 A B 关于 y 轴对称,杯脚高 CO = 4 ,杯高 DO = 8 ,杯底 MN x 轴上.

(1)求杯体 ACB 所在抛物线的函数表达式(不必写出 x 的取值范围);

(2)为使奖杯更加美观,小敏提出了改进方案,如图2,杯体 A ' CB ' 所在抛物线形状不变,杯口直径 A ' B ' / / AB ,杯脚高 CO 不变,杯深 CD ' 与杯高 OD ' 之比为0.6,求 A ' B ' 的长.

来源:2021年浙江省绍兴市中考数学试卷
  • 题型:未知
  • 难度:未知

渠县是全国优质黄花主产地,某加工厂加工黄花的成本为30元 / 千克,根据市场调查发现,批发价定为48元 / 千克时,每天可销售500千克,为增大市场占有率,在保证盈利的情况下,工厂采取降价措施,批发价每千克降低1元,每天销量可增加50千克.

(1)写出工厂每天的利润 W 元与降价 x 元之间的函数关系.当降价2元时,工厂每天的利润为多少元?

(2)当降价多少元时,工厂每天的利润最大,最大为多少元?

(3)若工厂每天的利润要达到9750元,并让利于民,则定价应为多少元?

来源:2021年四川省达州市中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学二次函数的应用试题