优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 二次函数的应用
初中数学

以初速度 v (单位: m / s ) 从地面竖直向上抛出小球,从抛出到落地的过程中,小球的高度 h (单位: m ) 与小球的运动时间 t (单位: s ) 之间的关系式是 h = vt - 4 . 9 t 2 .现将某弹性小球从地面竖直向上抛出,初速度为 v 1 ,经过时间 t 1 落回地面,运动过程中小球的最大高度为 h 1 (如图 1 ) ;小球落地后,竖直向上弹起,初速度为 v 2 ,经过时间 t 2 落回地面,运动过程中小球的最大高度为 h 2 (如图 2 ) .若 h 1 = 2 h 2 ,则 t 1 : t 2 =   

来源:2021年浙江省台州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图1是一座抛物线型拱桥侧面示意图.水面宽 AB 与桥长 CD 均为 24 m ,在距离 D 点6米的 E 处,测得桥面到桥拱的距离 EF 1 . 5 m ,以桥拱顶点 O 为原点,桥面为 x 轴建立平面直角坐标系.

(1)求桥拱顶部 O 离水面的距离.

(2)如图2,桥面上方有3根高度均为 4 m 的支柱 CG OH DI ,过相邻两根支柱顶端的钢缆呈形状相同的抛物线,其最低点到桥面距离为 1 m

①求出其中一条钢缆抛物线的函数表达式.

②为庆祝节日,在钢缆和桥拱之间竖直装饰若干条彩带,求彩带长度的最小值.

来源:2021年浙江省衢州市中考数学试卷
  • 题型:未知
  • 难度:未知

在平面直角坐标系中, O 为原点, ΔOAB 是等腰直角三角形, OBA = 90 ° BO = BA ,顶点 A ( 4 , 0 ) ,点 B 在第一象限,矩形 OCDE 的顶点 E ( - 7 2 0 ) ,点 C y 轴的正半轴上,点 D 在第二象限,射线 DC 经过点 B

(Ⅰ)如图①,求点 B 的坐标;

(Ⅱ)将矩形 OCDE 沿 x 轴向右平移,得到矩形 O ' C ' D ' E ' ,点 O C D E 的对应点分别为 O ' C ' D ' E ' .设 OO ' = t ,矩形 O ' C ' D ' E ' ΔOAB 重叠部分的面积为 S

①如图②,当点 E ' x 轴正半轴上,且矩形 O ' C ' D ' E ' ΔOAB 重叠部分为四边形时, D ' E ' OB 相交于点 F ,试用含有 t 的式子表示 S ,并直接写出 t 的取值范围;

②当 5 2 t 9 2 时,求 S 的取值范围(直接写出结果即可).

来源:2021年天津市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,直线 y = - 2 x + 2 与坐标轴交于 A B 两点,点 P 是线段 AB 上的一个动点,过点 P y 轴的平行线交直线 y = - x + 3 于点 Q ΔOPQ 绕点 O 顺时针旋转 45 ° ,边 PQ 扫过区域(阴影部分)面积的最大值是 (    )

A.

2 3 π

B.

1 2 π

C.

11 16 π

D.

21 32 π

来源:2021年四川省自贡市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,已知点 A ( 4 , 3 ) ,点 B 为直线 y = - 2 上的一动点,点 C ( 0 , n ) - 2 < n < 3 AC BC 于点 C ,连接 AB .若直线 AB x 正半轴所夹的锐角为 α ,那么当 sin α 的值最大时, n 的值为   

来源:2021年四川省乐山市中考数学试卷
  • 题型:未知
  • 难度:未知

公路上正在行驶的甲车,发现前方 20 m 处沿同一方向行驶的乙车后,开始减速,减速后甲车行驶的路程 s (单位: m ) 、速度 v (单位: m / s ) 与时间 t (单位: s ) 的关系分别可以用二次函数和一次函数表示,其图象如图所示.

(1)当甲车减速至 9 m / s 时,它行驶的路程是多少?

(2)若乙车以 10 m / s 的速度匀速行驶,两车何时相距最近,最近距离是多少?

来源:2021年山东省临沂市中考数学试卷
  • 题型:未知
  • 难度:未知

甲、乙两汽车出租公司均有50辆汽车对外出租,下面是两公司经理的一段对话:

甲公司经理:如果我公司每辆汽车月租费3000元,那么50辆汽车可以全部租出.如果每辆汽车的月租费每增加50元,那么将少租出1辆汽车.另外,公司为每辆租出的汽车支付月维护费200元.

乙公司经理:我公司每辆汽车月租费3500元,无论是否租出汽车,公司均需一次性支付月维护费共计1850元.

说明:①汽车数量为整数;②月利润 = 月租车费 - 月维护费;③两公司月利润差 = 月利润较高公司的利润 - 月利润较低公司的利润.

在两公司租出的汽车数量相等的条件下,根据上述信息,解决下列问题:

(1)当每个公司租出的汽车为10辆时,甲公司的月利润是   48000  元;当每个公司租出的汽车为   辆时,两公司的月利润相等;

(2)求两公司月利润差的最大值;

(3)甲公司热心公益事业,每租出1辆汽车捐出 a ( a > 0 ) 给慈善机构,如果捐款后甲公司剩余的月利润仍高于乙公司月利润,且当两公司租出的汽车均为17辆时,甲公司剩余的月利润与乙公司月利润之差最大,求 a 的取值范围.

来源:2021年江苏省扬州市中考数学试卷
  • 题型:未知
  • 难度:未知

Rt Δ ABC 中, A = 90 ° AB = 6 AC = 8 ,点 P ΔABC 所在平面内一点,则 P A 2 + P B 2 + P C 2 取得最小值时,下列结论正确的是 (    )

A.

P ΔABC 三边垂直平分线的交点

B.

P ΔABC 三条内角平分线的交点

C.

P ΔABC 三条高的交点

D.

P ΔABC 三条中线的交点

来源:2021年江苏省无锡市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在矩形 ABCD 中, AB = 3 cm AD = 3 cm .动点 P 从点 A 出发沿折线 AB - BC 向终点 C 运动,在边 AB 上以 1 cm / s 的速度运动;在边 BC 上以 3 cm / s 的速度运动,过点 P 作线段 PQ 与射线 DC 相交于点 Q ,且 PQD = 60 ° ,连接 PD BD .设点 P 的运动时间为 x ( s ) ΔDPQ ΔDBC 重合部分图形的面积为 y ( c m 2 )

(1)当点 P 与点 A 重合时,直接写出 DQ 的长;

(2)当点 P 在边 BC 上运动时,直接写出 BP 的长(用含 x 的代数式表示);

(3)求 y 关于 x 的函数解析式,并写出自变量 x 的取值范围.

来源:2021年吉林省中考数学试卷
  • 题型:未知
  • 难度:未知

如图所示,在平面直角坐标系 xOy 中,一次函数 y = 2 x 的图象 l 与函数 y = k x ( k > 0 , x > 0 ) 的图象(记为 Γ ) 交于点 A ,过点 A AB y 轴于点 B ,且 AB = 1 ,点 C 在线段 OB 上(不含端点),且 OC = t ,过点 C 作直线 l 1 / / x 轴,交 l 于点 D ,交图象 Γ 于点 E

(1)求 k 的值,并且用含 t 的式子表示点 D 的横坐标;

(2)连接 OE BE AE ,记 ΔOBE ΔADE 的面积分别为 S 1 S 2 ,设 U = S 1 - S 2 ,求 U 的最大值.

来源:2021年湖南省株洲市中考数学试卷
  • 题型:未知
  • 难度:未知

某超市从厂家购进 A B 两种型号的水杯,两次购进水杯的情况如表:

进货批次

A 型水杯(个     )

B 型水杯(个     )

总费用(元     )

100

200

8000

200

300

13000

(1)求 A B 两种型号的水杯进价各是多少元?

(2)在销售过程中, A 型水杯因为物美价廉而更受消费者喜欢.为了增大 B 型水杯的销售量,超市决定对 B 型水杯进行降价销售,当销售价为44元时,每天可以售出20个,每降价1元,每天将多售出5个,请问超市应将 B 型水杯降价多少元时,每天售出 B 型水杯的利润达到最大?最大利润是多少?

(3)第三次进货用10000元钱购进这两种水杯,如果每销售出一个 A 型水杯可获利10元,售出一个 B 型水杯可获利9元,超市决定每售出一个 A 型水杯就为当地"新冠疫情防控"捐 b 元用于购买防控物资.若 A B 两种型号的水杯在全部售出的情况下,捐款后所得的利润始终不变,此时 b 为多少?利润为多少?

来源:2021年湖南省怀化市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, ΔOAB 的顶点坐标分别为 O ( 0 , 0 ) A ( 3 , 4 ) B ( 6 , 0 ) ,动点 P Q 同时从点 O 出发,分别沿 x 轴正方向和 y 轴正方向运动,速度分别为每秒3个单位和每秒2个单位,点 P 到达点 B 时点 P Q 同时停止运动.过点 Q MN / / OB 分别交 AO AB 于点 M N ,连接 PM PN .设运动时间为 t (秒 )

(1)求点 M 的坐标(用含 t 的式子表示);

(2)求四边形 MNBP 面积的最大值或最小值;

(3)是否存在这样的直线 l ,总能平分四边形 MNBP 的面积?如果存在,请求出直线 l 的解析式;如果不存在,请说明理由;

(4)连接 AP ,当 OAP = BPN 时,求点 N OA 的距离.

来源:2021年湖南省衡阳市中考数学试卷
  • 题型:未知
  • 难度:未知

某商贸公司购进某种商品的成本为20元 / kg ,经过市场调研发现,这种商品在未来40天的销售单价 y (元 / kg ) 与时间 x (天 ) 之间的函数关系式为: y = 0 . 25 x + 30 1 x 20 x 为整数 35 ( 20 < x 40 x 为整数 ) ,且日销量 m ( kg ) 与时间 x (天 ) 之间的变化规律符合一次函数关系,如下表:

时间 x (天 )

1

3

6

10

 日销量 m ( kg )

142

138

132

124

(1)填空: m x 的函数关系为   

(2)哪一天的销售利润最大?最大日销售利润是多少?

(3)在实际销售的前20天中,公司决定每销售 1 kg 商品就捐赠 n 元利润 ( n < 4 ) 给当地福利院,后发现:在前20天中,每天扣除捐赠后的日销售利润随时间 x 的增大而增大,求 n 的取值范围.

来源:2021年湖北省十堰市中考数学试卷
  • 题型:未知
  • 难度:未知

某公司电商平台,在2021年五一长假期间,举行了商品打折促销活动,经市场调查发现,某种商品的周销售量 y (件 ) 是关于售价 x (元 / 件)的一次函数,如表仅列出了该商品的售价 x ,周销售量 y ,周销售利润 W (元 ) 的三组对应值数据.

x

40

70

90

y

180

90

30

W

3600

4500

2100

(1)求 y 关于 x 的函数解析式(不要求写出自变量的取值范围);

(2)若该商品进价 a (元 / 件),售价 x 为多少时,周销售利润 W 最大?并求出此时的最大利润;

(3)因疫情期间,该商品进价提高了 m (元 / 件) ( m > 0 ) ,公司为回馈消费者,规定该商品售价 x 不得超过55(元 / 件),且该商品在今后的销售中,周销售量与售价仍满足(1)中的函数关系,若周销售最大利润是4050元,求 m 的值.

来源:2021年湖北省荆门市中考数学试卷
  • 题型:未知
  • 难度:未知

红星公司销售一种成本为40元 / 件产品,若月销售单价不高于50元 / 件,一个月可售出5万件;月销售单价每涨价1元,月销售量就减少0.1万件.其中月销售单价不低于成本.设月销售单价为 x (单位:元 / 件),月销售量为 y (单位:万件).

(1)直接写出 y x 之间的函数关系式,并写出自变量 x 的取值范围;

(2)当月销售单价是多少元时,月销售利润最大,最大利润是多少万元?

(3)为响应国家“乡村振兴”政策,该公司决定在某月每销售1件产品便向大别山区捐款 a 元.已知该公司捐款当月的月销售单价不高于70元 / 件,月销售最大利润是78万元,求 a 的值.

来源:2021年湖北省黄冈市中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学二次函数的应用试题