优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 二次函数的应用 / 解答题
初中数学

已知四边形 ABCD 是边长为1的正方形,点 E 是射线 BC 上的动点,以 AE 为直角边在直线 BC 的上方作等腰直角三角形 AEF AEF = 90 ° ,设 BE = m

(1)如图,若点 E 在线段 BC 上运动, EF CD 于点 P AF CD 于点 Q ,连结 CF

①当 m = 1 3 时,求线段 CF 的长;

②在 ΔPQE 中,设边 QE 上的高为 h ,请用含 m 的代数式表示 h ,并求 h 的最大值;

(2)设过 BC 的中点且垂直于 BC 的直线被等腰直角三角形 AEF 截得的线段长为 y ,请直接写出 y m 的关系式.

来源:2021年江苏省无锡市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,直线 y = 1 2 x + 1 x y 轴分别交于点 B A ,顶点为 P 的抛物线 y = a x 2 - 2 ax + c 过点 A

(1)求出点 A B 的坐标及 c 的值;

(2)若函数 y = a x 2 - 2 ax + c 3 x 4 时有最大值为 a + 2 ,求 a 的值;

(3)连接 AP ,过点 A AP 的垂线交 x 轴于点 M .设 ΔBMP 的面积为 S

①直接写出 S 关于 a 的函数关系式及 a 的取值范围;

②结合 S a 的函数图象,直接写出 S > 1 8 a 的取值范围.

来源:2021年湖北省襄阳市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中, ΔAOB 的边 OA x 轴上, OA = AB ,且线段 OA 的长是方程 x 2 - 4 x - 5 = 0 的根,过点 B BE x 轴,垂足为 E tan BAE = 4 3 ,动点 M 以每秒1个单位长度的速度,从点 A 出发,沿线段 AB 向点 B 运动,到达点 B 停止.过点 M x 轴的垂线,垂足为 D ,以 MD 为边作正方形 MDCF ,点 C 在线段 OA 上,设正方形 MDCF ΔAOB 重叠部分的面积为 S ,点 M 的运动时间为 t ( t > 0 ) 秒.

(1)求点 B 的坐标;

(2)求 S 关于 t 的函数关系式,并写出自变量 t 的取值范围;

(3)当点 F 落在线段 OB 上时,坐标平面内是否存在一点 P ,使以 M A O P 为顶点的四边形是平行四边形?若存在,直接写出点 P 的坐标;若不存在,请说明理由.

来源:2021年黑龙江省龙东地区中考数学试卷
  • 题型:未知
  • 难度:未知

如图是某同学正在设计的一动画示意图, x 轴上依次有 A O N 三个点,且 AO = 2 ,在 ON 上方有五个台阶 T 1 ~ T 5 (各拐角均为 90 ° ) ,每个台阶的高、宽分别是1和1.5,台阶 T 1 x 轴距离 OK = 10 .从点 A 处向右上方沿抛物线 L : y = - x 2 + 4 x + 12 发出一个带光的点 P

(1)求点 A 的横坐标,且在图中补画出 y 轴,并直接指出点 P 会落在哪个台阶上;

(2)当点 P 落到台阶上后立即弹起,又形成了另一条与 L 形状相同的抛物线 C ,且最大高度为11,求 C 的解析式,并说明其对称轴是否与台阶 T 5 有交点;

(3)在 x 轴上从左到右有两点 D E ,且 DE = 1 ,从点 E 向上作 EB x 轴,且 BE = 2 .在 ΔBDE 沿 x 轴左右平移时,必须保证(2)中沿抛物线 C 下落的点 P 能落在边 BD (包括端点)上,则点 B 横坐标的最大值比最小值大多少?

[ 注:(2)中不必写 x 的取值范围 ]

来源:2021年河北省中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, ACB = 90 ° BC = 6 3 cm AC = 12 cm .点 P CA 边上的一动点,点 P 从点 C 出发以每秒 2 cm 的速度沿 CA 方向匀速运动,以 CP 为边作等边 ΔCPQ (点 B 、点 Q AC 同侧),设点 P 运动的时间为 x 秒, ΔABC ΔCPQ 重叠部分的面积为 S

(1)当点 Q 落在 ΔABC 内部时,求此时 ΔABC ΔCPQ 重叠部分的面积 S (用含 x 的代数式表示,不要求写 x 的取值范围);

(2)当点 Q 落在 AB 上时,求此时 ΔABC ΔCPQ 重叠部分的面积 S 的值;

(3)当点 Q 落在 ΔABC 外部时,求此时 ΔABC ΔCPQ 重叠部分的面积 S (用含 x 的代数式表示).

image.png

来源:2021年贵州省铜仁市中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学二次函数的应用解答题