在等边 中, , ,垂足为 ,点 为 边上一点,点 为直线 上一点,连接 .
(1)将线段 绕点 逆时针旋转 得到线段 ,连接 .
①如图1,当点 与点 重合,且 的延长线过点 时,连接 ,求线段 的长;
②如图2,点 不与点 , 重合, 的延长线交 边于点 ,连接 ,求证: ;
(2)如图3,当点 为 中点时,点 为 中点,点 在边 上,且 ,点 从 中点 沿射线 运动,将线段 绕点 顺时针旋转 得到线段 ,连接 ,当 最小时,直接写出 的面积.
在 中, , 是边 上一动点,连接 ,将 绕点 逆时针旋转至 的位置,使得 .
(1)如图1,当 时,连接 ,交 于点 .若 平分 , ,求 的长;
(2)如图2,连接 ,取 的中点 ,连接 .猜想 与 存在的数量关系,并证明你的猜想;
(3)如图3,在(2)的条件下,连接 , .若 ,当 , 时,请直接写出 的值.
如图,在 中, , 是对角线 上的两点(点 在点 左侧),且 .
(1)求证:四边形 是平行四边形;
(2)当 , , 时,求 的长.
【推理】
如图1,在正方形 中,点 是 上一动点,将正方形沿着 折叠,点 落在点 处,连结 , ,延长 交 于点 .
(1)求证: .
【运用】
(2)如图2,在【推理】条件下,延长 交 于点 .若 , ,求线段 的长.
【拓展】
(3)将正方形改成矩形,同样沿着 折叠,连结 ,延长 , 交直线 于 , 两点,若 , ,求 的值(用含 的代数式表示).
如图,在 中, , 与 相切于点 ,过点 作 的垂线交 的延长线于点 ,交 于点 ,连结 .
(1)求证: 是 的切线.
(2)若 , ,求 的长.
如图1,四边形 内接于 , 为直径, 上存在点 ,满足 ,连结 并延长交 的延长线于点 , 与 交于点 .
(1)若 ,请用含 的代数式表示 .
(2)如图2,连结 , .求证: .
(3)如图3,在(2)的条件下,连结 , .
①若 ,求 的周长.
②求 的最小值.
【证明体验】
(1)如图1, 为 的角平分线, ,点 在 上, .求证: 平分 .
【思考探究】
(2)如图2,在(1)的条件下, 为 上一点,连结 交 于点 .若 , , ,求 的长.
【拓展延伸】
(3)如图3,在四边形 中,对角线 平分 , ,点 在 上, .若 , , ,求 的长.
如图,在菱形 中, 是锐角, 是 边上的动点,将射线 绕点 按逆时针方向旋转,交直线 于点 .
(1)当 , 时,
①求证: ;
②连结 , ,若 ,求 的值;
(2)当 时,延长 交射线 于点 ,延长 交射线 于点 ,连结 , ,若 , ,则当 为何值时, 是等腰三角形.
在扇形 中,半径 ,点 在 上,连结 ,将 沿 折叠得到△ .
(1)如图1,若 ,且 与 所在的圆相切于点 .
①求 的度数.
②求 的长.
(2)如图2, 与 相交于点 ,若点 为 的中点,且 ,求 的长.
小王在学习浙教版九上课本第72页例2后,进一步开展探究活动:将一个矩形 绕点 顺时针旋转 ,得到矩形 ,连结 .
探究 如图1,当 时,点 恰好在 延长线上.若 ,求 的长.
探究 如图2,连结 ,过点 作 交 于点 .线段 与 相等吗?请说明理由.
探究 在探究2的条件下,射线 分别交 , 于点 , (如图 ,发现线段 , , 存在一定的数量关系,请写出这个关系式,并加以证明.
已知在 中, 是 的中点, 是 延长线上的一点,连结 , .
(1)如图1,若 , , , ,求 的长.
(2)过点 作 ,交 延长线于点 ,如图2所示,若 , ,求证: .
(3)如图3,若 ,是否存在实数 ,当 时, ?若存在,请写出 的值;若不存在,请说明理由.
在① ,② ,③ 这三个条件中选择其中一个,补充在下面的问题中,并完成问题的解答.
问题:如图,在 中, ,点 在 边上(不与点 ,点 重合),点 在 边上(不与点 ,点 重合),连接 , , 与 相交于点 .若 ① ② 或 ③ ,求证: .
注:如果选择多个条件分别作答,按第一个解答计分.
试题篮
()