如图,矩形 中, , . , 分别在 , 上,点 与点 关于 所在的直线对称, 是边 上的一动点.
(1)连接 , ,求证四边形 是菱形;
(2)当 的周长最小时,求 的值;
(3)连接 交 于点 ,当 时,求 的长.
如图,在菱形 中,对角线 , 相交于点 , 是 中点,连接 .过点 作 交 的延长线于点 ,连接 .
求证:(1) ;
(2)四边形 是矩形.
如图, 与 相切于点 ,过点 作 ,垂足为 ,交 于点 .连接 , ,并延长 交 于点 ,与 的延长线交于点 .
(1)求证: 是 的切线;
(2)若 , ,求 的值.
如图, 的对角线 , 相交于点 . , 是 上的两点,并且 ,连接 , .
(1)求证: ;
(2)若 ,连接 , ,判断四边形 的形状,并说明理由.
如图,在 中,弦 与直径 垂直,垂足为 , 的延长线上有
一点 ,满足 .过点 作 ,交 的延长线于点 ,连接 交 于点 .
(1)求证: 是 的切线;
(2)如果 , ,求 的值;
(3)如果 ,求证: .
如图,在 的边 上取一点 ,以 为圆心, 为半径画 , 与边 相切于点 , ,连接 交 于点 ,连接 ,并延长交线段 于点 .
(1)求证: 是 的切线;
(2)若 , ,求 的半径;
(3)若 是 的中点,试探究 与 的数量关系并说明理由.
如图, 和 是有公共顶点的等腰直角三角形, ,点 为射线 , 的交点.
(1)求证: ;
(2)若 , ,把 绕点 旋转,当 时,求 的长;
如图,在平行四边形 中, 、 分别是 、 的中点, ,垂足为 , ,垂足为 , 与 相交于点 .
(1)证明: .
(2)若 ,求四边形 的对角线 的长.
问题背景:如图1,等腰 中, , ,作 于点 ,则 为 的中点, ,于是 ;
迁移应用:如图2, 和 都是等腰三角形, , , , 三点在同一条直线上,连接 .
①求证: ;
②请直接写出线段 , , 之间的等量关系式;
拓展延伸:如图3,在菱形 中, ,在 内作射线 ,作点 关于 的对称点 ,连接 并延长交 于点 ,连接 , .
①证明 是等边三角形;
②若 , ,求 的长.
如图,在矩形 中,对角线 的垂直平分线 分别交 、 、 于点 、 、 ,连接 和 .
(1)求证:四边形 为菱形;
(2)若 , ,求菱形 的周长.
如图,在 中, , 于点 , 于点 , 与 交于点 , 于点 ,点 是 的中点,连接 并延长交 于点 .
(1)如图①所示,若 ,求证: ;
(2)如图②所示,若 ,如图③所示,若 (点 与点 重合),猜想线段 、 与 之间又有怎样的数量关系?请直接写出你的猜想,不需证明.
如图, 是正方形 的对角线,线段 在其所在的直线上平移,将平移得到的线段记为 ,连接 ,过点 作 ,垂足为 ,连接 、 .
(1)如图①所示,求证: ;
(2)如图②所示, 在 的延长线上,如图③所示, 在 的反向延长线上,猜想线段 、 之间有怎样的数量关系?请直接写出你的猜想,不需证明.
试题篮
()