如图,在 中, , , 是斜边 上的中线,将 沿 对折,使点 落在点 处,线段 与 相交于点 ,则 等于
A. |
|
B. |
|
C. |
|
D. |
|
)用一条宽度相等的足够长的纸条打一个结(如图1所示),然后轻轻拉紧、压平就可以得到如图2所示的正五边形.图中, 度.
[问题探究]
(1)如图1,和均为等腰直角三角形,,点,,在同一直线上,连接,.
①请探究与之间的位置关系: ;
②若,,则线段的长为 ;
[拓展延伸]
(2)如图2,和均为直角三角形,,,,,.将绕点在平面内顺时针旋转,设旋转角为,作直线,连接,当点,,在同一直线上时,画出图形,并求线段的长.
若二次函数的图象与轴、轴分别交于点、,且过点.
(1)求二次函数表达式;
(2)若点为抛物线上第一象限内的点,且,求点的坐标;
(3)在抛物线上下方)是否存在点,使?若存在,求出点到轴的距离;若不存在,请说明理由.
小圆同学对图形旋转前后的线段之间、角之间的关系进行了拓展探究.
(一猜测探究
在中,,是平面内任意一点,将线段绕点按顺时针方向旋转与相等的角度,得到线段,连接.
(1)如图1,若是线段上的任意一点,请直接写出与的数量关系是 ,与的数量关系是 ;
(2)如图2,点是延长线上点,若是内部射线上任意一点,连接,(1)中结论是否仍然成立?若成立,请给予证明,若不成立,请说明理由.
(二拓展应用
如图3,在△中,,,,是上的任意点,连接,将绕点按顺时针方向旋转,得到线段,连接.求线段长度的最小值.
如图1,点、点在直线上,反比例函数的图象经过点.
(1)求和的值;
(2)将线段向右平移个单位长度,得到对应线段,连接、.
①如图2,当时,过作轴于点,交反比例函数图象于点,求的值;
②在线段运动过程中,连接,若是以为腰的等腰三角形,求所有满足条件的的值.
如图,是的直径,是的弦,过点作的切线,交的延长线于点,过点作于点,交的延长线于点.
(1)求证:;
(2)若,,求的半径.
如图, 是 的直径, , 是 上的两点,且 平分 , 分别与 , 相交于点 , ,则下列结论不一定成立的是
A. |
|
B. |
|
C. |
|
D. |
|
如图,是的直径,点是延长线上的一点,点在上,且,.
(1)求证:是的切线;
(2)若的半径为3,求图中阴影部分的面积.
试题篮
()