如图,在中,,以为直径的分别与,交于点,,过点作,垂足为点.
(1)求证:直线是的切线;
(2)求证:;
(3)若的半径为4,,求阴影部分的面积.
已知抛物线 与 轴交于点 ,与直线 为任意实数)相交于 , 两点,则下列结论不正确的是
A. |
存在实数 ,使得 为等腰三角形 |
B. |
存在实数 ,使得 的内角中有两角分别为 和 |
C. |
任意实数 ,使得 都为直角三角形 |
D. |
存在实数 ,使得 为等边三角形 |
如图,已知是的直径,,是的弦,交于,过点作的切线交的延长线于点,连接并延长交的延长线于点.
(1)求证:是的切线;
(2)若,,求线段的长.
一个等腰三角形的底边长是6,腰长是一元二次方程 的一根,则此三角形的周长是
A. |
16 |
B. |
12 |
C. |
14 |
D. |
12或16 |
如图,是的外接圆,的平分线交于点,交于点,过点作直线.
(1)判断直线与的位置关系,并说明理由;
(2)若,,,求的长.
如图,为的直径,,为圆上的两点,,弦,相交于点.
(1)求证:;
(2)若,,求的半径;
(3)在(2)的条件下,过点作的切线,交的延长线于点,过点作交于,两点(点在线段上),求的长.
如图,为的直径,为上的一点,,,的延长线交于点,连接.
(1)求证:是的切线;
(2)若为的中点,求的值.
我们知道,各个角都相等,各条边都相等的多边形叫做正多边形.对一个各条边都相等的凸多边形(边数大于,可以由若干条对角线相等判定它是正多边形.例如,各条边都相等的凸四边形,若两条对角线相等,则这个四边形是正方形.
(1)已知凸五边形的各条边都相等.
①如图1,若,求证:五边形是正五边形;
②如图2,若,请判断五边形是不是正五边形,并说明理由:
(2)判断下列命题的真假.(在括号内填写“真”或“假”
如图3,已知凸六边形的各条边都相等.
①若,则六边形是正六边形;
②若,则六边形是正六边形.
试题篮
()