优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 等边三角形的判定与性质 / 解答题
初中数学

小颖在学习“两点之间线段最短”查阅资料时发现: ΔABC 内总存在一点 P 与三个顶点的连线的夹角相等,此时该点到三个顶点的距离之和最小.

【特例】如图1,点 P 为等边 ΔABC 的中心,将 ΔACP 绕点 A 逆时针旋转 60 ° 得到 ΔADE ,从而有 DE = PC ,连接 PD 得到 PD = PA ,同时 APB + APD = 120 ° + 60 ° = 180 ° ADP + ADE = 180 ° ,即 B P D E 四点共线,故 PA + PB + PC = PD + PB + DE = BE .在 ΔABC 中,另取一点 P ' ,易知点 P ' 与三个顶点连线的夹角不相等,可证明 B P ' D ' E 四点不共线,所以 P ' A + P ' B + P ' C > PA + PB + PC ,即点 P 到三个顶点距离之和最小.

【探究】(1)如图2, P ΔABC 内一点, APB = BPC = 120 ° ,证明 PA + PB + PC 的值最小;

【拓展】(2)如图3, ΔABC 中, AC = 6 BC = 8 ACB = 30 ° ,且点 P ΔABC 内一点,求点 P 到三个顶点的距离之和的最小值.

来源:2016年辽宁省朝阳市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, ACB = 90 ° A = 30 ° ,点 O AB 中点,点 P 为直线 BC 上的动点(不与点 B 、点 C 重合),连接 OC OP ,将线段 OP 绕点 P 顺时针旋转 60 ° ,得到线段 PQ ,连接 BQ

(1)如图1,当点 P 在线段 BC 上时,请直接写出线段 BQ CP 的数量关系.

(2)如图2,当点 P CB 延长线上时,(1)中结论是否成立?若成立,请加以证明;若不成立,请说明理由;

(3)如图3,当点 P BC 延长线上时,若 BPO = 15 ° BP = 4 ,请求出 BQ 的长

来源:2017年辽宁省盘锦市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,四边形 ABCD 是菱形, BAD = 120 ° ,点 E 在射线 AC 上(不包括点 A 和点 C ) ,过点 E 的直线 GH 交直线 AD 于点 G ,交直线 BC 于点 H ,且 GH / / DC ,点 F BC 的延长线上, CF = AG ,连接 ED EF DF

(1)如图1,当点 E 在线段 AC 上时,

①判断 ΔAEG 的形状,并说明理由.

②求证: ΔDEF 是等边三角形.

(2)如图2,当点 E AC 的延长线上时, ΔDEF 是等边三角形吗?如果是,请证明你的结论;如果不是,请说明理由.

来源:2019年辽宁省盘锦市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, ΔABC ΔCDE 是等边三角形,连接 AD ,取 AD 的中点 P ,连接 BP 并延长至点 M ,使 PM = BP ,连接 AM EM AE ,将 ΔCDE 绕点 C 顺时针旋转.

(1)如图1,当点 D BC 上,点 E AC 上时,则 ΔAEM 的形状为  

(2)将 ΔCDE 绕点 C 顺时针旋转至图2的位置,请判断 ΔAEM 的形状,并说明理由;

(3)若 CD = 1 2 BC ,将 ΔCDE 由图1位置绕点 C 顺时针旋转 α ( 0 ° α < 360 ° ) ,当 ME = 3 CD 时,请直接写出 α 的值.

来源:2018年辽宁省铁岭市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, C = 90 ° ,点 D 在线段 AB 上,以 AD 为直径的 O BC 相交于点 E ,与 AC 相交于点 F B = BAE = 30 °

(1)求证: BC O 的切线;

(2)若 AC = 3 ,求 O 的半径 r

(3)在(1)的条件下,判断以 A O E F 为顶点的四边形为哪种特殊四边形,并说明理由.

来源:2018年辽宁省盘锦市中考数学试卷
  • 题型:未知
  • 难度:未知

ΔABC ΔADE 中, BA = BC DA = DE .且 ABC = ADE = α ,点 E ΔABC 的内部,连接 EC EB BD ,并且 ACE + ABE = 90 °

(1)如图①,当 α = 60 ° 时,线段 BD CE 的数量关系为  ,线段 EA EB EC 的数量关系为  

(2)如图②,当 α = 90 ° 时,请写出线段 EA EB EC 的数量关系,并说明理由;

(3)在(2)的条件下,当点 E 在线段 CD 上时,若 BC = 2 5 ,请直接写出 ΔBDE 的面积.

来源:2018年辽宁省辽阳市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, ΔABC 中, AB = BC BD AC 于点 D FAC = 1 2 ABC ,且 FAC AC 下方.点 P Q 分别是射线 BD ,射线 AF 上的动点,且点 P 不与点 B 重合,点 Q 不与点 A 重合,连接 CQ ,过点 P PE CQ 于点 E ,连接 DE

(1)若 ABC = 60 ° BP = AQ

①如图1,当点 P 在线段 BD 上运动时,请直接写出线段 DE 和线段 AQ 的数量关系和位置关系;

②如图2,当点 P 运动到线段 BD 的延长线上时,试判断①中的结论是否成立,并说明理由;

(2)若 ABC = 2 α 60 ° ,请直接写出当线段 BP 和线段 AQ 满足什么数量关系时,能使(1)中①的结论仍然成立(用含 α 的三角函数表示).

来源:2018年辽宁省抚顺市中考数学试卷
  • 题型:未知
  • 难度:未知

如图1, ΔABC 是边长为 4 cm 的等边三角形,边 AB 在射线 OM 上,且 OA = 6 cm ,点 D O 点出发,沿 OM 的方向以 1 cm / s 的速度运动,当 D 不与点 A 重合时,将 ΔACD 绕点 C 逆时针方向旋转 60 ° 得到 ΔBCE ,连接 DE

(1)求证: ΔCDE 是等边三角形;

(2)如图2,当 6 < t < 10 时, ΔBDE 的周长是否存在最小值?若存在,求出 ΔBDE 的最小周长;若不存在,请说明理由;

(3)如图3,当点 D 在射线 OM 上运动时,是否存在以 D E B 为顶点的三角形是直角三角形?若存在,求出此时 t 的值;若不存在,请说明理由.

来源:2017年湖南省郴州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, AB O 的直径, AC 是上半圆的弦,过点 C O 的切线 DE AB 的延长线于点 E ,过点 A 作切线 DE 的垂线,垂足为 D ,且与 O 交于点 F ,设 DAC CEA 的度数分别是 α β

(1)用含 α 的代数式表示 β ,并直接写出 α 的取值范围;

(2)连接 OF AC 交于点 O ' ,当点 O ' AC 的中点时,求 α β 的值.

来源:2017年广西玉林市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, ACB = 90 ° ,点 D E 分别是边 BC AB 上的中点,连接 DE 并延长至点 F ,使 EF = 2 DE ,连接 CE AF

(1)证明: AF = CE

(2)当 B = 30 ° 时,试判断四边形 ACEF 的形状并说明理由.

来源:2017年贵州省贵阳市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,已知 AB O 的直径,点 P 为圆上一点,点 C AB 延长线上一点, PA = PC C = 30 °

(1)求证: CP O 的切线.

(2)若 O 的直径为8,求阴影部分的面积.

来源:2016年贵州省铜仁市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, BD O 的直径,弦 BC OA 相交于点 E AF O 相切于点 A ,交 DB 的延长线于点 F F = 30 ° BAC = 120 ° BC = 8

(1)求 ADB 的度数;

(2)求 AC 的长度.

来源:2019年广西贺州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,点 D 是等边三角形 ABC 外接圆的 BC ̂ 上一点(与点 B C 不重合), BE / / DC AD 于点 E

(1)求证: ΔBDE 是等边三角形;

(2)求证: ΔABE ΔCBD

(3)如果 BD = 2 CD = 1 ,求 ΔABC 的边长.

来源:2017年广西来宾市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,矩形 ABCD 的对角线 AC BD 相交于点 O ,点 E F BD 上, BE = DF

(1)求证: AE = CF

(2)若 AB = 6 COD = 60 ° ,求矩形 ABCD 的面积.

来源:2017年广西北海市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AB = AC BAC = 120 ° ,点 D BC 边上, D 经过点 A 和点 B 且与 BC 边相交于点 E

(1)求证: AC D 的切线;

(2)若 CE = 2 3 ,求 D 的半径.

来源:2019年甘肃省临夏州中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学等边三角形的判定与性质解答题