如图1,在四边形 中, , , 是 的直径, 平分 .
(1)求证:直线 与 相切;
(2)如图2,记(1)中的切点为 , 为优弧 上一点, , .求 的值.
如图,点是线段上一点,,以点为圆心,的长为半径作,过点作的垂线交于,两点,点在线段的延长线上,连接交于点,以,为边作.
(1)求证:是的切线;
(2)若,求四边形与重叠部分的面积;
(3)若,,连接,求和的长.
如图,已知正方形的边长为,为边上一点(不与端点重合),将沿对折至,延长交边于点,连接,.
给出下列判断:
①;
②若,则;
③若为的中点,则的面积为;
④若,则;
⑤.
其中正确的是 .(写出所有正确判断的序号)
如图①,已知正方体的棱长为,,,分别是,,的中点,截面将这个正方体切去一个角后得到一个新的几何体(如图②,则图②中阴影部分的面积为 .
如图,矩形中,,,点是对角线的中点,过点的直线分别交、边于点、.
(1)求证:四边形是平行四边形;
(2)当时,求的长.
如图,正方形 ,点 , 分别在 , 上,且 , 与 相交于点 .
(1)求证: ;
(2)若 , ,求 的长.
如图,在平面直角坐标系中,菱形的顶点为坐标原点,顶点在轴的正半轴上,顶点在反比例函数的图象上,已知菱形的周长是8,,则的值是 .
公元3世纪初,中国古代数学家赵爽注《周髀算经》时,创造了“赵爽弦图”.如图,设勾,弦,则小正方形的面积是 .
我国古代数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的三角形,如图所示,已知 , , ,则正方形 的边长是
A. |
|
B. |
2 |
C. |
|
D. |
4 |
试题篮
()