问题:如图①,在 中, , 为 边上一点(不与点 , 重合),将线段 绕点 逆时针旋转 得到 ,连接 ,则线段 , , 之间满足的等量关系式为 ;
探索:如图②,在 与 中, , ,将 绕点 旋转,使点 落在 边上,试探索线段 , , 之间满足的等量关系,并证明你的结论;
应用:如图③,在四边形 中, .若 , ,求 的长.
定义:
数学活动课上,李老师给出如下定义:如果一个三角形有一边上的中线等于这条边的一半,那么称这个三角形为“智慧三角形”.
理解:
(1)如图1,已知 、 是 上两点,请在圆上找出满足条件的点 ,使 为“智慧三角形”(画出点 的位置,保留作图痕迹);
(2)如图2,在正方形 中, 是 的中点, 是 上一点,且 ,试判断 是否为“智慧三角形”,并说明理由;
运用:
(3)如图3,在平面直角坐标系 中, 的半径为1,点 是直线 上的一点,若在 上存在一点 ,使得 为“智慧三角形”,当其面积取得最小值时,直接写出此时点 的坐标.
如图,平面内的两条直线 、 ,点 , 在直线 上,点 、 在直线 上,过 、 两点分别作直线 的垂线,垂足分别为 , ,我们把线段 叫做线段 在直线 上的正投影,其长度可记作 或 ,特别地线段 在直线 上的正投影就是线段 .
请依据上述定义解决如下问题:
(1)如图1,在锐角 中, , ,则 ;
(2)如图2,在 中, , , ,求 的面积;
(3)如图3,在钝角 中, ,点 在 边上, , , ,求 ,
如图,在 中,半径 ,过点 的中点 作 交 于 、 两点,且 ,以 为圆心, 为半径作 ,交 于 点.
(1)求 的半径 的长;
(2)计算阴影部分的面积.
我们规定:三角形任意两边的“极化值”等于第三边上的中线和这边一半的平方差.如图1,在 中, 是 边上的中线, 与 的“极化值”就等于 的值,可记为 △ .
(1)在图1中,若 , , , 是 边上的中线,则 △ , △ ;
(2)如图2,在 中, , ,求 △ 、 △ 的值;
(3)如图3,在 中, , 是 边上的中线,点 在 上,且 .已知 △ , △ ,求 的面积.
(回顾)
如图1, 中, , , ,则 的面积等于 .
(探究)
图2是同学们熟悉的一副三角尺,一个含有 的角,较短的直角边长为 ;另一个含有 的角,直角边长为 ,小明用两副这样的三角尺拼成一个平行四边形 (如图 ,用了两种不同的方法计算它的面积,从而推出 ,小丽用两副这样的三角尺拼成了一个矩形 (如图 ,也推出 ,请你写出小明或小丽推出 的具体说理过程.
(应用)
在四边形 中, , , , , (如图5)
(1)点 在 上,设 ,求 的最小值;
(2)点 在 上,将 沿 翻折,点 落在 上的点 处,点 是 的中点吗?说明理由.
试题篮
()