优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 勾股定理 / 解答题
初中数学

在一次数学研究性学习中,小兵将两个全等的直角三角形纸片 ABC DEF 拼在一起,使点 A 与点 F 重合,点 C 与点 D 重合(如图 1 ) ,其中 ACB = DFE = 90 ° BC = EF = 3 cm AC = DF = 4 cm ,并进行如下研究活动.

活动一:将图1中的纸片 DEF 沿 AC 方向平移,连结 AE BD (如图 2 ) ,当点 F 与点 C 重合时停止平移.

[思考]图2中的四边形 ABDE 是平行四边形吗?请说明理由.

[发现]当纸片 DEF 平移到某一位置时,小兵发现四边形 ABDE 为矩形(如图 3 ) .求 AF 的长.

活动二:在图3中,取 AD 的中点 O ,再将纸片 DEF 绕点 O 顺时针方向旋转 α ( 0 α 90 ) ,连结 OB OE (如图 4 )

[探究]当 EF 平分 AEO 时,探究 OF BD 的数量关系,并说明理由.

来源:2020年浙江省嘉兴市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, A B O 上两点,且 AB = OA ,连接 OB 并延长到点 C ,使 BC = OB ,连接 AC

(1)求证: AC O 的切线;

(2)点 D E 分别是 AC OA 的中点, DE 所在直线交 O 于点 F G OA = 4 ,求 GF 的长.

来源:2021年四川省南充市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AB = BC ,以 ΔABC 的边 AB 为直径作 O ,交 AC 于点 D ,过点 D DE BC ,垂足为点 E

(1)试证明 DE O 的切线;

(2)若 O 的半径为5, AC = 6 10 ,求此时 DE 的长.

来源:2020年山东省聊城市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在正方形 ABCD 中,点 E BC 边上,连接 AE DAE 的平分线 AG CD 边交于点 G ,与 BC 的延长线交于点 F .设 CE EB = λ ( λ > 0 )

(1)若 AB = 2 λ = 1 ,求线段 CF 的长.

(2)连接 EG ,若 EG AF

①求证:点 G CD 边的中点.

②求 λ 的值.

来源:2020年浙江省杭州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中,以 AB 为直径的 O AC 于点 M ,弦 MN / / BC AB 于点 E ,且 ME = 3 AE = 4 AM = 5

(1)求证: BC O 的切线;

(2)求 O 的直径 AB 的长度.

来源:2020年山东省东营市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,四边形 ABCD 是菱形,点 H 为对角线 AC 的中点,点 E AB 的延长线上, CE AB ,垂足为 E ,点 F AD 的延长线上, CF AD ,垂足为 F

(1)若 BAD = 60 ° ,求证:四边形 CEHF 是菱形;

(2)若 CE = 4 ΔACE 的面积为16,求菱形 ABCD 的面积.

来源:2020年云南省中考数学试卷
  • 题型:未知
  • 难度:未知

已知:如图,矩形 ABCD 的对角线 AC BD 相交于点 O BOC = 120 ° AB = 2

(1)求矩形对角线的长;

(2)过 O OE AD 于点 E ,连结 BE .记 ABE = α ,求 tan α 的值.

来源:2021年浙江省金华市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,四边形 ABCD 是菱形,点 H 为对角线 AC 的中点,点 E AB 的延长线上, CE AB ,垂足为 E ,点 F AD 的延长线上, CF AD ,垂足为 F

(1)若 BAD = 60 ° ,求证:四边形 CEHF 是菱形;

(2)若 CE = 4 ΔACE 的面积为16,求菱形 ABCD 的面积.

来源:2020年云南省中考数学试卷
  • 题型:未知
  • 难度:未知

如图, AB O 的直径, AM BN 是它的两条切线,过 O 上一点 E 作直线 DC ,分别交 AM BN 于点 D C ,且 DA = DE

(1)求证:直线 CD O 的切线;

(2)求证: O A 2 = DE · CE

来源:2020年山东省滨州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 6 × 4 的方格纸 ABCD 中,请按要求画格点线段(端点在格点上),且线段的端点均不与点 A B C D 重合.

(1)在图1中画格点线段 EF GH 各一条,使点 E F G H 分别落在边 AB BC CD DA 上,且 EF = GH EF 不平行 GH

(2)在图2中画格点线段 MN PQ 各一条,使点 M N P Q 分别落在边 AB BC CD DA 上,且 PQ = 5 MN

来源:2020年浙江省温州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, C = 90 °

(1)尺规作图:作 Rt Δ ABC 的外接圆 O ;作 ACB 的角平分线交 O 于点 D ,连接 AD .(不写作法,保留作图痕迹)

(2)若 AC = 6 BC = 8 ,求 AD 的长.

来源:2020年青海省中考数学试卷
  • 题型:未知
  • 难度:未知

如图所示, AB O 的直径, AD BC 分别切 O A B 两点, CD O 有公共点 E ,且 AD = DE

(1)求证: CD O 的切线;

(2)若 AB = 12 BC = 4 ,求 AD 的长.

来源:2020年西藏中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 ΔABC ΔDCE 中, AC = DE B = DCE = 90 ° ,点 A C D 依次在同一直线上,且 AB / / DE

(1)求证: ΔABC ΔDCE

(2)连结 AE ,当 BC = 5 AC = 12 时,求 AE 的长.

来源:2020年浙江省温州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AB = AC ,以 AB 为直径的 O BC 相交于点 D ,过点 D O 的切线交 AC 于点 E

(1)求证: DE AC

(2)若 O 的半径为5, BC = 16 ,求 DE 的长.

来源:2020年山东省菏泽市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,以等边三角形 ABC BC 边为直径画圆,交 AC 于点 D DF AB 于点 F ,连接 OF ,且 AF = 1

(1)求证: DF O 的切线;

(2)求线段 OF 的长度.

来源:2021年山东省东营市中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学勾股定理解答题