如图,在正方形 中,点 在 边上,连接 , 的平分线 与 边交于点 ,与 的延长线交于点 .设 .
(1)若 , ,求线段 的长.
(2)连接 ,若 ,
①求证:点 为 边的中点.
②求 的值.
如图,在 中, ,点 在 上,以 为半径的半圆 交 于点 ,交 于点 ,过点 作半圆 的切线 ,交 于点 .
(1)求证: ;
(2)若 , , ,求半圆 的半径长.
如图, 为 的直径,点 在 上, 与过点 的切线互相垂直,垂足为 .连接 并延长,交 的延长线于点 .
(1)求证: ;
(2)若 , ,求 的长.
如图,在矩形 中, ,点 是 边上的一点,将 沿着 折叠,点 刚好落在 边上点 处;点 在 上,将 沿着 折叠,点 刚好落在 上点 处,此时 ,
(1)求证: ;
(2)求 的长;
(3)求 的值.
如图, 在 中, ,以 为直径作 交 于点 , 为 的中点, 连接 并延长交 的延长线于点 .
(1) 求证: 是 的切线;
(2) 若 , ,求 直径的长 .
如图1, 是 的直径,直线 与 相切于点 ,直线 与 相切于点 ,点 (异于点 在 上,点 在 上,且 ,延长 与 相交于点 ,连接 并延长交 于点 .
(1)求证: 是 的切线;
(2)求证: ;
(3)如图2,连接 并延长与 分别相交于点 、 ,连接 .若 , ,求 .
如图, 中, .
(1)作点 关于 的对称点 ;(要求:尺规作图,不写作法,保留作图痕迹)
(2)在(1)所作的图中,连接 , ,连接 ,交 于点 .
①求证:四边形 是菱形;
②取 的中点 ,连接 ,若 , ,求点 到 的距离.
如图,在的正方形网格中,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.
(1)在图①中,画一个直角三角形,使它的三边长都是有理数;
(2)在图②中,画一个直角三角形,使它的一边长是有理数,另外两边长是无理数;
(3)在图③中,画一个直角三角形,使它的三边长都是无理数.
在的方格纸中,点
,
,
都在格点上,按要求画图:
(1)在图1中找一个格点,使以点
,
,
,
为顶点的四边形是平行四边形.
(2)在图2中仅用无刻度的直尺,把线段三等分(保留画图痕迹,不写画法).
如图1是实验室中的一种摆动装置,在地面上,支架
是底边为
的等腰直角三角形,摆动臂
可绕点
旋转,摆动臂
可绕点
旋转,
,
.
(1)在旋转过程中,
①当,
,
三点在同一直线上时,求
的长.
②当,
,
三点为同一直角三角形的顶点时,求
的长.
(2)若摆动臂顺时针旋转
,点
的位置由
外的点
转到其内的点
处,连结
,如图2,此时
,
,求
的长.
如图,点是线段
上一点,
,以点
为圆心,
的长为半径作
,过点
作
的垂线交
于
,
两点,点
在线段
的延长线上,连接
交
于点
,以
,
为边作
.
(1)求证:是
的切线;
(2)若,求四边形
与
重叠部分的面积;
(3)若,
,连接
,求
和
的长.
如图,在矩形中,
为对角线
的中点,过点
作直线分别与矩形的边
,
交于
,
两点,连接
,
.
(1)求证:四边形为平行四边形;
(2)若,
,且
,求
的长.
如图,以等边三角形 的 边为直径画圆,交 于点 , 于点 ,连接 ,且 .
(1)求证: 是 的切线;
(2)求线段 的长度.
问题呈现
如图1,在边长为1的正方形网格中,连接格点 , 和 , , 和 相交于点 ,求 的值.
方法归纳
求一个锐角的三角函数值,我们往往需要找出(或构造出)一个直角三角形.观察发现问题中 不在直角三角形中,我们常常利用网格画平行线等方法解决此类问题,比如连接格点 , ,可得 ,则 ,连接 ,那么 就变换到 中.
问题解决
(1)直接写出图1中 的值为 2 ;
(2)如图2,在边长为1的正方形网格中, 与 相交于点 ,求 的值;
思维拓展
(3)如图3, , ,点 在 上,且 ,延长 到 ,使 ,连接 交 的延长线于点 ,用上述方法构造网格求 的度数.
试题篮
()