优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 勾股定理 / 解答题
初中数学

如图,在△ABC中,∠ABC=90°,以BC为直径作⊙O,交ACDE CD ̂ 的中点,连接CEBEBEACF

(1)求证:ABAF

(2)若AB=3,BC=4,求CE的长.

来源:2016年广西河池市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在矩形 ABCD 中, AD = 4 ,将 A 向内翻折,点 A 落在 BC 上,记为 A 1 ,折痕为 DE .若将 B 沿 E A 1 向内翻折,点 B 恰好落在 DE 上,记为 B 1 ,则 AB =    

来源:2020年贵州省铜仁市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,Rt△ ABC中,∠ B=30°,∠ ACB=90°, CDABABD,以 CD为较短的直角边向△ CDB的同侧作Rt△ DEC,满足∠ E=30°,∠ DCE=90°,再用同样的方法作Rt△ FGC,∠ FCG=90°,继续用同样的方法作Rt△ HIC,∠ HCI=90°.若 ACa,求 CI的长.

来源:2016年广东省中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 ΔABC ΔDCE 中, AC = DE B = DCE = 90 ° ,点 A C D 依次在同一直线上,且 AB / / DE

(1)求证: ΔABC ΔDCE

(2)连结 AE ,当 BC = 5 AC = 12 时,求 AE 的长.

来源:2020年浙江省温州市中考数学试卷
  • 题型:未知
  • 难度:未知

在等腰 ΔADC 和等腰 ΔBEC 中, ADC = BEC = 90 ° BC < CD ,将 ΔBEC 绕点 C 逆时针旋转,连接 AB ,点 O 为线段 AB 的中点,连接 DO EO

(1)如图1,当点 B 旋转到 CD 边上时,请直接写出线段 DO EO 的位置关系和数量关系;

(2)如图2,当点 B 旋转到 AC 边上时,(1)中的结论是否成立?若成立,请写出证明过程,若不成立,请说明理由;

(3)若 BC = 4 CD = 2 6 ,在 ΔBEC 绕点 C 逆时针旋转的过程中,当 ACB = 60 ° 时,请直接写出线段 OD 的长.

来源:2020年辽宁省铁岭市、葫芦岛市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在的正方形网格中,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.

(1)在图①中,画一个直角三角形,使它的三边长都是有理数;

(2)在图②中,画一个直角三角形,使它的一边长是有理数,另外两边长是无理数;

(3)在图③中,画一个直角三角形,使它的三边长都是无理数.

来源:2020年贵州省贵阳市中考数学试卷
  • 题型:未知
  • 难度:未知

)已知 ΔAOB ΔMON 都是等腰直角三角形 ( 2 2 OA < OM = ON ) AOB = MON = 90 °

(1)如图1:连 AM BN ,求证: ΔAOM ΔBON

(2)若将 ΔMON 绕点 O 顺时针旋转,

①如图2,当点 N 恰好在 AB 边上时,求证: B N 2 + A N 2 = 2 O N 2

②当点 A M N 在同一条直线上时,若 OB = 4 ON = 3 ,请直接写出线段 BN 的长.

来源:2020年辽宁省锦州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, AB O 的直径,弦 CD AB ,垂足为点 P ,直线 BF AD 的延长线交于点 F ,且 AFB = ABC

(1)求证:直线 BF O 的切线.

(2)若 CD = 2 3 OP = 1 ,求线段 BF 的长.

来源:2016年浙江省衢州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,正方形 ABCD ,点 E F 分别在 AD CD 上,且 DE = CF AF BE 相交于点 G

(1)求证: BE = AF

(2)若 AB = 4 DE = 1 ,求 AG 的长.

来源:2019年湖南省长沙市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,矩形中,,点是对角线的中点,过点的直线分别交边于点

(1)求证:四边形是平行四边形;

(2)当时,求的长.

来源:2019年湖北省鄂州市中考数学试卷
  • 题型:未知
  • 难度:未知

问题背景 如图(1),已知 ΔABC ΔADE ,求证: ΔABD ΔACE

尝试应用 如图(2),在 ΔABC ΔADE 中, BAC = DAE = 90 ° ABC = ADE = 30 ° AC DE 相交于点 F ,点 D BC 边上, AD BD = 3 ,求 DF CF 的值;

拓展创新 如图(3), D ΔABC 内一点, BAD = CBD = 30 ° BDC = 90 ° AB = 4 AC = 2 3 ,直接写出 AD 的长.

来源:2020年湖北省武汉市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在四边形中,,对角线的垂直平分线与边分别相交于点

(1)求证:四边形是菱形;

(2)若,求菱形的周长.

来源:2020年江苏省连云港市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,以等边三角形 ABC BC 边为直径画圆,交 AC 于点 D DF AB 于点 F ,连接 OF ,且 AF = 1

(1)求证: DF O 的切线;

(2)求线段 OF 的长度.

来源:2021年山东省东营市中考数学试卷
  • 题型:未知
  • 难度:未知

问题呈现

如图1,在边长为1的正方形网格中,连接格点 D N E C DN EC 相交于点 P ,求 tan CPN 的值.

方法归纳

求一个锐角的三角函数值,我们往往需要找出(或构造出)一个直角三角形.观察发现问题中 CPN 不在直角三角形中,我们常常利用网格画平行线等方法解决此类问题,比如连接格点 M N ,可得 MN / / EC ,则 DNM = CPN ,连接 DM ,那么 CPN 就变换到 Rt Δ DMN 中.

问题解决

(1)直接写出图1中 tan CPN 的值为 2 

(2)如图2,在边长为1的正方形网格中, AN CM 相交于点 P ,求 cos CPN 的值;

思维拓展

(3)如图3, AB BC AB = 4 BC ,点 M AB 上,且 AM = BC ,延长 CB N ,使 BN = 2 BC ,连接 AN CM 的延长线于点 P ,用上述方法构造网格求 CPN 的度数.

来源:2018年江苏省扬州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, ΔABC 在平面直角坐标系内,顶点的坐标分别为 A ( 1 , 5 ) B ( 4 , 2 ) C ( 2 , 2 )

(1)平移 ΔABC ,使点 B 移动到点 B 1 ( 1 , 1 ) ,画出平移后的△ A 1 B 1 C 1 ,并写出点 A 1 C 1 的坐标.

(2)画出 ΔABC 关于原点 O 对称的△ A 2 B 2 C 2

(3)线段 A A 1 的长度为  

来源:2017年辽宁省阜新市中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学勾股定理解答题