优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 勾股定理 / 解答题
初中数学

如图,线段经过的圆心,交两点,的弦,连结,连结并延长交于点,连结于点

(1)求证:直线的切线;

(2)求的半径的长;

(3)求线段的长.

来源:2019年四川省宜宾市中考数学试卷
  • 题型:未知
  • 难度:未知

思维启迪:

(1)如图1, A B 两点分别位于一个池塘的两端,小亮想用绳子测量 A B 间的距离,但绳子不够长,聪明的小亮想出一个办法:先在地上取一个可以直接到达 B 点的点 C ,连接 BC ,取 BC 的中点 P (点 P 可以直接到达 A 点),利用工具过点 C CD / / AB AP 的延长线于点 D ,此时测得 CD = 200 米,那么 A B 间的距离是 200 米.

思维探索:

(2)在 ΔABC ΔADE 中, AC = BC AE = DE ,且 AE < AC ACB = AED = 90 ° ,将 ΔADE 绕点 A 顺时针方向旋转,把点 E AC 边上时 ΔADE 的位置作为起始位置(此时点 B 和点 D 位于 AC 的两侧),设旋转角为 α ,连接 BD ,点 P 是线段 BD 的中点,连接 PC PE

①如图2,当 ΔADE 在起始位置时,猜想: PC PE 的数量关系和位置关系分别是  

②如图3,当 α = 90 ° 时,点 D 落在 AB 边上,请判断 PC PE 的数量关系和位置关系,并证明你的结论;

③当 α = 150 ° 时,若 BC = 3 DE = 1 ,请直接写出 P C 2 的值.

来源:2019年辽宁省沈阳市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在四边形中,,点的中点,点的中点,,连接

(1)判断四边形的形状,并说明理由;

(2)如果,点上的动点,求的周长的最小值.

来源:2019年四川省德阳市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在以线段 AB 为直径的 O 上取一点 C ,连接 AC BC .将 ΔABC 沿 AB 翻折后得到 ΔABD

(1)试说明点 D O 上;

(2)在线段 AD 的延长线上取一点 E ,使 A B 2 = AC · AE .求证: BE O 的切线;

(3)在(2)的条件下,分别延长线段 AE CB 相交于点 F ,若 BC = 2 AC = 4 ,求线段 EF 的长.

来源:2018年江苏省盐城市中考数学试卷
  • 题型:未知
  • 难度:未知

的方格纸中,点都在格点上,按要求画图:

(1)在图1中找一个格点,使以点为顶点的四边形是平行四边形.

(2)在图2中仅用无刻度的直尺,把线段三等分(保留画图痕迹,不写画法).

来源:2019年浙江省舟山市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AD BC D BD = AD DG = DC E F 分别是 BG AC 的中点.

(1)求证: DE = DF DE DF

(2)连接 EF ,若 AC = 10 ,求 EF 的长.

来源:2017年黑龙江省大兴安岭中考数学试卷
  • 题型:未知
  • 难度:未知

(年云南省昆明市)如图,AH是⊙O的直径,AE平分∠FAH,交⊙O于点E,过点E的直线FG⊥AF,垂足为F,B为直径OH上一点,点E、F分别在矩形ABCD的边BC和CD上.

(1)求证:直线FG是⊙O的切线;
(2)若CD=10,EB=5,求⊙O的直径.

  • 题型:未知
  • 难度:未知

(年贵州省毕节)如图,将▱ABCD的AD边延长至点E,使DE=AD,连接CE,F是BC边的中点,连接FD.

(1)求证:四边形CEDF是平行四边形;
(2)若AB=3,AD=4,∠A=60°,求CE的长.

  • 题型:未知
  • 难度:未知

(年贵州省贵阳市)如图,在矩形纸片ABCD中,AB=4,AD=12,将矩形纸片折叠,使点C落在AD边上的点M处,折痕为PE,此时PD=3.

(1)求MP的值;
(2)在AB边上有一个动点F,且不与点A,B重合.当AF等于多少时,△MEF的周长最小?
(3)若点G,Q是AB边上的两个动点,且不与点A,B重合,GQ=2.当四边形MEQG的周长最小时,求最小周长值.(计算结果保留根号)

  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, ACB = 90 ° AC = BC = 3 ,点 D 在边 AC 上,且 AD = 2 CD DE AB ,垂足为点 E ,联结 CE ,求:

(1)线段 BE 的长;

(2) ECB 的余切值.

来源:2016年上海市中考数学试卷
  • 题型:未知
  • 难度:未知

中,,垂足为,点延长线上一点,连接

(1)如图1,若,求的长;

(2)如图2,点是线段上一点,,点外一点,,连接并延长交于点,且点是线段的中点,求证:

来源:2017年重庆市中考数学试卷(a卷)
  • 题型:未知
  • 难度:未知

如图,以等边三角形 ABC BC 边为直径画圆,交 AC 于点 D DF AB 于点 F ,连接 OF ,且 AF = 1

(1)求证: DF O 的切线;

(2)求线段 OF 的长度.

来源:2021年山东省东营市中考数学试卷
  • 题型:未知
  • 难度:未知

问题呈现

如图1,在边长为1的正方形网格中,连接格点 D N E C DN EC 相交于点 P ,求 tan CPN 的值.

方法归纳

求一个锐角的三角函数值,我们往往需要找出(或构造出)一个直角三角形.观察发现问题中 CPN 不在直角三角形中,我们常常利用网格画平行线等方法解决此类问题,比如连接格点 M N ,可得 MN / / EC ,则 DNM = CPN ,连接 DM ,那么 CPN 就变换到 Rt Δ DMN 中.

问题解决

(1)直接写出图1中 tan CPN 的值为 2 

(2)如图2,在边长为1的正方形网格中, AN CM 相交于点 P ,求 cos CPN 的值;

思维拓展

(3)如图3, AB BC AB = 4 BC ,点 M AB 上,且 AM = BC ,延长 CB N ,使 BN = 2 BC ,连接 AN CM 的延长线于点 P ,用上述方法构造网格求 CPN 的度数.

来源:2018年江苏省扬州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, ΔABC 在平面直角坐标系内,顶点的坐标分别为 A ( 1 , 5 ) B ( 4 , 2 ) C ( 2 , 2 )

(1)平移 ΔABC ,使点 B 移动到点 B 1 ( 1 , 1 ) ,画出平移后的△ A 1 B 1 C 1 ,并写出点 A 1 C 1 的坐标.

(2)画出 ΔABC 关于原点 O 对称的△ A 2 B 2 C 2

(3)线段 A A 1 的长度为  

来源:2017年辽宁省阜新市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在正方形中,点上的一点,点延长线上的一点,且,连结

(1)求证:

(2)若,请求出的长.

来源:2019年四川省内江市中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学勾股定理解答题