优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 勾股定理 / 解答题
初中数学

如图,在矩形中,为边上一点,,连接.动点从点同时出发,点的速度沿向终点运动;点的速度沿折线向终点运动.设点运动的时间为,在运动过程中,点,点经过的路线与线段围成的图形面积为

(1)    

(2)求关于的函数解析式,并写出自变量的取值范围;

(3)当时,直接写出的值.

来源:2019年吉林省中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在中,.点从点出发,沿向终点运动,同时点从点出发,沿射线运动,它们的速度均为每秒5个单位长度,点到达终点时,同时停止运动.当点不与点重合时,过点于点,连结,以为邻边作.设重叠部分图形的面积为,点的运动时间为秒.

(1)①的长为  

的长用含的代数式表示为  

(2)当为矩形时,求的值;

(3)当重叠部分图形为四边形时,求之间的函数关系式;

(4)当过点且平行于的直线经过一边中点时,直接写出的值.

来源:2019年吉林省长春市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在四边形中,,对角线交于点平分,过点的延长线于点,连接

(1)求证:四边形是菱形;

(2)若,求的长.

来源:2018年北京市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,的一条弦,的中点,过点于点,过点的切线交的延长线于点

(1)求证:

(2)若,求的半径.

来源:2017年北京市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在四边形 ABCD 中, ABC = 90 ° AC = AD M N 分别为 AC CD 的中点,连接 BM MN BN

(1)求证: BM = MN

(2) BAD = 60 ° AC 平分 BAD AC = 2 ,求 BN 的长.

来源:2016年北京市中考数学试卷
  • 题型:未知
  • 难度:未知

中,的中点.为直线上一动点,连接.过点,交直线于点,连接

(1)如图1,当是线段的中点时,设,求的长(用含的式子表示);

(2)当点在线段的延长线上时,依题意补全图2,用等式表示线段之间的数量关系,并证明.

来源:2020年北京市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B

(1)求证:△ADF∽△DEC;
(2)若AB=8,AD=6,AF=4,求AE的长.

  • 题型:未知
  • 难度:未知

小薇将一副三角尺如图所示摆放在一起,发现只要知道其中一边的长就可以求出其他各边的长,若已知=,求的长.

  • 题型:未知
  • 难度:未知

如图,P为等腰△ABC的顶角A的外角平分线上任一点,连接PB,PC.

(1)求证:PB+PC>2AB.
(2)当PC=2,PB=,∠ACP=45°时,求AB的长.

  • 题型:未知
  • 难度:未知

(年贵州省毕节)如图,以△ABC的BC边上一点O为圆心的圆,经过A,B两点,且与BC边交于点E,D为BE的下半圆弧的中点,连接AD交BC于F,AC=FC.

(1)求证:AC是⊙O的切线;
(2)已知圆的半径R=5,EF=3,求DF的长.

  • 题型:未知
  • 难度:未知

(年云南省昆明市)如图,AH是⊙O的直径,AE平分∠FAH,交⊙O于点E,过点E的直线FG⊥AF,垂足为F,B为直径OH上一点,点E、F分别在矩形ABCD的边BC和CD上.

(1)求证:直线FG是⊙O的切线;
(2)若CD=10,EB=5,求⊙O的直径.

  • 题型:未知
  • 难度:未知

(年青海省中考)如图,在△ABC中,∠B=60°,⊙O是△ABC的外接圆,过点A作⊙O的切线,交CO的延长线于点M,CM交⊙O于点D.

(1)求证:AM=AC;
(2)若AC=3,求MC的长.

  • 题型:未知
  • 难度:未知

(年新疆乌鲁木齐市)如图,AB是⊙O的直径,CD与⊙O相切于点C,与AB的延长线交于点D,DE⊥AD且与AC的延长线交于点E.

(1)求证:DC=DE;
(2)若tan∠CAB=,AB=3,求BD的长.

  • 题型:未知
  • 难度:未知

(年贵州省遵义市)如图,△ABC中,AB=AC,以AB为直径作⊙O,交BC于点D,交CA的延长线于点E,连接AD、DE.

(1)求证:D是BC的中点;
(2)若DE=3,BD—AD=2,求⊙O的半径;
(3)在(2)的条件下,求弦AE的长.

  • 题型:未知
  • 难度:未知

(年贵州省贵阳市)如图,在矩形纸片ABCD中,AB=4,AD=12,将矩形纸片折叠,使点C落在AD边上的点M处,折痕为PE,此时PD=3.

(1)求MP的值;
(2)在AB边上有一个动点F,且不与点A,B重合.当AF等于多少时,△MEF的周长最小?
(3)若点G,Q是AB边上的两个动点,且不与点A,B重合,GQ=2.当四边形MEQG的周长最小时,求最小周长值.(计算结果保留根号)

  • 题型:未知
  • 难度:未知

初中数学勾股定理解答题