优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 平行四边形的性质 / 解答题
初中数学

如图, BD ABCD 的对角线.

(1)作对角线 BD 的垂直平分线,分别交 AD BC BD 于点 E F O (尺规作图,不写作法,保留作图痕迹);

(2)连接 BE DF ,求证:四边形 BEDF 为菱形.

来源:2021年湖北省襄阳市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中, ΔAOB 的边 OA x 轴上, OA = AB ,且线段 OA 的长是方程 x 2 - 4 x - 5 = 0 的根,过点 B BE x 轴,垂足为 E tan BAE = 4 3 ,动点 M 以每秒1个单位长度的速度,从点 A 出发,沿线段 AB 向点 B 运动,到达点 B 停止.过点 M x 轴的垂线,垂足为 D ,以 MD 为边作正方形 MDCF ,点 C 在线段 OA 上,设正方形 MDCF ΔAOB 重叠部分的面积为 S ,点 M 的运动时间为 t ( t > 0 ) 秒.

(1)求点 B 的坐标;

(2)求 S 关于 t 的函数关系式,并写出自变量 t 的取值范围;

(3)当点 F 落在线段 OB 上时,坐标平面内是否存在一点 P ,使以 M A O P 为顶点的四边形是平行四边形?若存在,直接写出点 P 的坐标;若不存在,请说明理由.

来源:2021年黑龙江省龙东地区中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在平行四边形 ABCD 中, AB = 3 ,点 E 为线段 AB 的三等分点(靠近点 A ) ,点 F 为线段 CD 的三等分点(靠近点 C ) ,且 CE AB .将 ΔBCE 沿 CE 对折, BC 边与 AD 边交于点 G ,且 DC = DG

(1)证明:四边形 AECF 为矩形;

(2)求四边形 AECG 的面积.

来源:2021年黑龙江省大庆市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在平行四边形 ABCD 中, AE CF 分别平分 BAD DCB ,交对角线 BD 于点EF

(1)若 BCF 60 ° ,求 ABC 的度数;

(2)求证: BE DF

来源:2020年重庆市中考数学试卷(b卷)
  • 题型:未知
  • 难度:未知

如图,在 ABCD 中, DE AC 于点O,交BC于点E EG EC GF AD DE于点F,连接 FC ,点H为线段 AO 上一点,连接 HD HF

(1)判断四边形 GECF 的形状,并说明理由;

(2)当 DHF HAD 时,求证: AH CH EC AD

来源:2020年甘肃省兰州市中考数学试卷
  • 题型:未知
  • 难度:未知

已知:如图, E ABCD 的边 BC 延长线上的一点,且 CE = BC

求证: ΔABC ΔDCE

来源:2020年山东省淄博市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 ABCD 中, D = 60 ° ,对角线 AC BC O 经过点 A B ,与 AC 交于点 M ,连接 AO 并延长与 O 交于点 F ,与 CB 的延长线交于点 E AB = EB

(1)求证: EC O 的切线;

(2)若 AD = 2 3 ,求 AM ̂ 的长(结果保留 π )

来源:2020年山东省烟台市中考数学试卷
  • 题型:未知
  • 难度:未知

ΔABC ΔAED 均为等腰三角形,且 BAC = EAD = 90 °

(1)如图(1),点 B DE 的中点,判定四边形 BEAC 的形状,并说明理由;

(2)如图(2),若点 G EC 的中点,连接 GB 并延长至点 F ,使 CF = CD

求证:① EB = DC

EBG = BFC

来源:2020年山东省泰安市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 ABCD 中, E BC 的中点,连接 AE 并延长交 DC 的延长线于点 F ,连接 BF AC ,若 AD = AF ,求证:四边形 ABFC 是矩形.

来源:2020年山东省聊城市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,点 E ABCD 的边 CD 的中点,连结 AE 并延长,交 BC 的延长线于点 F

(1)若 AD 的长为2,求 CF 的长.

(2)若 BAF = 90 ° ,试添加一个条件,并写出 F 的度数.

来源:2020年浙江省绍兴市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 5 × 5 的网格中, ΔABC 的三个顶点都在格点上.

(1)在图1中画出一个以 AB 为边的 ABDE ,使顶点 D E 在格点上.

(2)在图2中画出一条恰好平分 ΔABC 周长的直线 l (至少经过两个格点).

来源:2020年浙江省衢州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,已知在平面直角坐标系 xOy 中,抛物线 y = - x 2 + bx + c ( c > 0 ) 的顶点为 D ,与 y 轴的交点为 C .过点 C 的直线 CA 与抛物线交于另一点 A (点 A 在对称轴左侧),点 B AC 的延长线上,连结 OA OB DA DB

(1)如图1,当 AC / / x 轴时,

①已知点 A 的坐标是 ( - 2 , 1 ) ,求抛物线的解析式;

②若四边形 AOBD 是平行四边形,求证: b 2 = 4 c

(2)如图2,若 b = - 2 BC AC = 3 5 ,是否存在这样的点 A ,使四边形 AOBD 是平行四边形?若存在,求出点 A 的坐标;若不存在,请说明理由.

来源:2020年浙江省湖州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,四边形 ABCD 是平行四边形, DE / / BF ,且分别交对角线 AC 于点 E F ,连接 BE DF

(1)求证: AE = CF

(2)若 BE = DE ,求证:四边形 EBFD 为菱形.

来源:2020年新疆生产建设兵团中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在平行四边形 ABCD 中,对角线 AC BD 相交于点 O ,分别过点 A C AE BD CF BD ,垂足分别为 E F AC 平分 DAE

(1)若 AOE = 50 ° ,求 ACB 的度数;

(2)求证: AE = CF

来源:2020年重庆市中考数学试卷(a卷)
  • 题型:未知
  • 难度:未知

如图,四边形 OABC 是平行四边形,以点 O 为圆心, OC 为半径的 O AB 相切于点 B ,与 AO 相交于点 D AO 的延长线交 O 于点 E ,连接 EB OC 于点 F .求 C E 的度数.

来源:2020年山西省中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学平行四边形的性质解答题