如图, 为 的对角线.
(1)作对角线 的垂直平分线,分别交 , , 于点 , , (尺规作图,不写作法,保留作图痕迹);
(2)连接 , ,求证:四边形 为菱形.
如图,在平面直角坐标系中, 的边 在 轴上, ,且线段 的长是方程 的根,过点 作 轴,垂足为 , ,动点 以每秒1个单位长度的速度,从点 出发,沿线段 向点 运动,到达点 停止.过点 作 轴的垂线,垂足为 ,以 为边作正方形 ,点 在线段 上,设正方形 与 重叠部分的面积为 ,点 的运动时间为 秒.
(1)求点 的坐标;
(2)求 关于 的函数关系式,并写出自变量 的取值范围;
(3)当点 落在线段 上时,坐标平面内是否存在一点 ,使以 、 、 、 为顶点的四边形是平行四边形?若存在,直接写出点 的坐标;若不存在,请说明理由.
如图,在平行四边形 中, ,点 为线段 的三等分点(靠近点 ,点 为线段 的三等分点(靠近点 ,且 .将 沿 对折, 边与 边交于点 ,且 .
(1)证明:四边形 为矩形;
(2)求四边形 的面积.
如图,在平行四边形 中, , 分别平分 和 ,交对角线 于点E,F.
(1)若 ,求 的度数;
(2)求证: .
如图,在 中, 于点O,交BC于点E, , 交DE于点F,连接 ,点H为线段 上一点,连接 .
(1)判断四边形 的形状,并说明理由;
(2)当 时,求证: .
如图,在 中, ,对角线 , 经过点 , ,与 交于点 ,连接 并延长与 交于点 ,与 的延长线交于点 , .
(1)求证: 是 的切线;
(2)若 ,求 的长(结果保留 .
若 和 均为等腰三角形,且 .
(1)如图(1),点 是 的中点,判定四边形 的形状,并说明理由;
(2)如图(2),若点 是 的中点,连接 并延长至点 ,使 .
求证:① ,
② .
如图,点 是 的边 的中点,连结 并延长,交 的延长线于点 .
(1)若 的长为2,求 的长.
(2)若 ,试添加一个条件,并写出 的度数.
如图,在 的网格中, 的三个顶点都在格点上.
(1)在图1中画出一个以 为边的 ,使顶点 , 在格点上.
(2)在图2中画出一条恰好平分 周长的直线 (至少经过两个格点).
如图,已知在平面直角坐标系 中,抛物线 的顶点为 ,与 轴的交点为 .过点 的直线 与抛物线交于另一点 (点 在对称轴左侧),点 在 的延长线上,连结 , , 和 .
(1)如图1,当 轴时,
①已知点 的坐标是 ,求抛物线的解析式;
②若四边形 是平行四边形,求证: .
(2)如图2,若 , ,是否存在这样的点 ,使四边形 是平行四边形?若存在,求出点 的坐标;若不存在,请说明理由.
如图,四边形 是平行四边形, ,且分别交对角线 于点 , ,连接 , .
(1)求证: ;
(2)若 ,求证:四边形 为菱形.
如图,在平行四边形 中,对角线 , 相交于点 ,分别过点 , 作 , ,垂足分别为 , . 平分 .
(1)若 ,求 的度数;
(2)求证: .
试题篮
()