优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 矩形的性质
初中数学

折纸的思考.

(操作体验)

用一张矩形纸片折等边三角形.

第一步,对折矩形纸片 ABCD ( AB > BC ) (图①),使 AB DC 重合,得到折痕 EF ,把纸片展平(图②).

第二步,如图③,再一次折叠纸片,使点 C 落在 EF 上的 P 处,并使折痕经过点 B ,得到折痕 BG ,折出 PB PC ,得到 ΔPBC

(1)说明 ΔPBC 是等边三角形.

(数学思考)

(2)如图④,小明画出了图③的矩形 ABCD 和等边三角形 PBC .他发现,在矩形 ABCD 中把 ΔPBC 经过图形变化,可以得到图⑤中的更大的等边三角形,请描述图形变化的过程.

(3)已知矩形一边长为 3 cm ,另一边长为 acm ,对于每一个确定的 a 的值,在矩形中都能画出最大的等边三角形,请画出不同情形的示意图,并写出对应的 a 的取值范围.

(问题解决)

(4)用一张正方形铁片剪一个直角边长分别为 4 cm 1 cm 的直角三角形铁片,所需正方形铁片的边长的最小值为        cm

来源:2017年江苏省南京市中考数学试卷
  • 题型:未知
  • 难度:未知

问题呈现:

如图1,点 E F G H 分别在矩形 ABCD 的边 AB BC CD DA 上, AE = DG ,求证: 2 S 四边形 EFGH = S 矩形 ABCD .( S 表示面积)

实验探究:

某数学实验小组发现:若图1中 AH BF ,点 G CD 上移动时,上述结论会发生变化,分别过点 E G BC 边的平行线,再分别过点 F H AB 边的平行线,四条平行线分别相交于点 A 1 B 1 C 1 D 1 ,得到矩形 A 1 B 1 C 1 D 1

如图2,当 AH > BF 时,若将点 G 向点 C 靠近 ( DG > AE ) ,经过探索,发现: 2 S 四边形 EFGH = S 矩形 ABCD + S 矩形 A 1 B 1 C 1 D 1

如图3,当 AH > BF 时,若将点 G 向点 D 靠近 ( DG < AE ) ,请探索 S 四边形 EFGH S 矩形 ABCD S 矩形 A 1 B 1 C 1 D 1 之间的数量关系,并说明理由.

迁移应用:

请直接应用“实验探究”中发现的结论解答下列问题:

(1)如图4,点 E F G H 分别是面积为25的正方形 ABCD 各边上的点,已知 AH > BF AE > DG S 四边形 EFGH = 11 HF = 29 ,求 EG 的长.

(2)如图5,在矩形 ABCD 中, AB = 3 AD = 5 ,点 E H 分别在边 AB AD 上, BE = 1 DH = 2 ,点 F G 分别是边 BC CD 上的动点,且 FG = 10 ,连接 EF HG ,请直接写出四边形 EFGH 面积的最大值.

来源:2017年江苏省连云港市中考数学试卷
  • 题型:未知
  • 难度:未知

如图1,在 ΔABC 中,矩形 EFGH 的一边 EF AB 上,顶点 G H 分别在 BC AC 上, CD 是边 AB 上的高, CD GH 于点 I .若 CI = 4 HI = 3 AD = 9 2 .矩形 DFGI 恰好为正方形.

(1)求正方形 DFGI 的边长;

(2)如图2,延长 AB P .使得 AC = CP ,将矩形 EFGH 沿 BP 的方向向右平移,当点 G 刚好落在 CP 上时,试判断移动后的矩形与 ΔCBP 重叠部分的形状是三角形还是四边形,为什么?

(3)如图3,连接 DG ,将正方形 DFGI 绕点 D 顺时针旋转一定的角度得到正方形 DF ' G ' I ' ,正方形 DF ' G ' I ' 分别与线段 DG DB 相交于点 M N ,求 ΔMNG ' 的周长.

来源:2018年湖南省永州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, 在平面直角坐标系中, 把矩形 OABC 沿对角线 AC 所在直线折叠, 点 B 落在点 D 处, DC y 轴相交于点 E ,矩形 OABC 的边 OC OA 的长是关于 x 的一元二次方程 x 2 12 x + 32 = 0 的两个根, 且 OA > OC

(1) 求线段 OA OC 的长;

(2) 求证: ΔADE ΔCOE ,并求出线段 OE 的长;

(3) 直接写出点 D 的坐标;

(4) 若 F 是直线 AC 上一个动点, 在坐标平面内是否存在点 P ,使以点 E C P F 为顶点的四边形是菱形?若存在, 请直接写出 P 点的坐标;若不存在, 请说明理由 .

来源:2017年黑龙江省大兴安岭中考数学试卷
  • 题型:未知
  • 难度:未知

如图1,已知矩形 AOCB AB = 6 cm BC = 16 cm ,动点 P 从点 A 出发,以 3 cm / s 的速度向点 O 运动,直到点 O 为止;动点 Q 同时从点 C 出发,以 2 cm / s 的速度向点 B 运动,与点 P 同时结束运动.

(1)点 P 到达终点 O 的运动时间是   s ,此时点 Q 的运动距离是   cm

(2)当运动时间为 2 s 时, P Q 两点的距离为   cm

(3)请你计算出发多久时,点 P 和点 Q 之间的距离是 10 cm

(4)如图2,以点 O 为坐标原点, OC 所在直线为 x 轴, OA 所在直线为 y 轴, 1 cm 长为单位长度建立平面直角坐标系,连接 AC ,与 PQ 相交于点 D ,若双曲线 y = k x 过点 D ,问 k 的值是否会变化?若会变化,说明理由;若不会变化,请求出 k 的值.

来源:2018年贵州省黔东南州中考数学试卷
  • 题型:未知
  • 难度:未知

如图,矩形 AOCB 的顶点 A C 分别位于 x 轴和 y 轴的正半轴上,线段 OA OC 的长度满足方程 | x 15 | + y 13 = 0 ( OA > OC ) ,直线 y = kx + b 分别与 x 轴、 y 轴交于 M N 两点,将 ΔBCN 沿直线 BN 折叠,点 C 恰好落在直线 MN 上的点 D 处,且 tan CBD = 3 4

(1)求点 B 的坐标;

(2)求直线 BN 的解析式;

(3)将直线 BN 以每秒1个单位长度的速度沿 y 轴向下平移,求直线 BN 扫过矩形 AOCB 的面积 S 关于运动的时间 t ( 0 < t 13 ) 的函数关系式.

来源:2017年黑龙江省七台河市中考数学试卷
  • 题型:未知
  • 难度:未知

在平面直角坐标系中,矩形 ABCD 的顶点坐标为 A ( 0 , 0 ) B ( 6 , 0 ) C ( 6 , 8 ) D ( 0 , 8 ) AC BD 交于点 E

(1)如图(1),双曲线 y = k 1 x 过点 E ,直接写出点 E 的坐标和双曲线的解析式;

(2)如图(2),双曲线 y = k 2 x BC CD 分别交于点 M N ,点 C 关于 MN 的对称点 C ' y 轴上.求证 ΔCMN ~ ΔCBD ,并求点 C ' 的坐标;

(3)如图(3),将矩形 ABCD 向右平移 m ( m > 0 ) 个单位长度,使过点 E 的双曲线 y = k 3 x AD 交于点 P .当 ΔAEP 为等腰三角形时,求 m 的值.

来源:2019年广西河池市中考数学试卷
  • 题型:未知
  • 难度:未知

如图①,在△ABC中, ACB 90 ° B 30 ° AC 1 DAB的中点,EF为△ACD的中位线,四边形EFGH为△ACD的内接矩形(矩形的四个顶点均在△ACD的边上).

(1)计算矩形EFGH的面积;

(2)将矩形EFGH沿AB向右平移,F落在BC上时停止移动.在平移过程中,当矩形与△CBD重叠部分的面积为 3 16 时,求矩形平移的距离;

(3)如图③,将(2)中矩形平移停止时所得的矩形记为矩形E1F1G1H1,将矩形E1F1G1H1G1点按顺时针方向旋转,当H1落在CD上时停止转动,旋转后的矩形记为矩形E2F2G1H2,设旋转角为α,求cosα的值.

来源:2016年湖南省益阳市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在矩形OABC纸片中,OA=7,OC=5,DBC边上动点,将△OCD沿OD折叠,当点C的对应点落在直线ly=﹣x+7上时,记为点EF,当点C的对应点落在边OA上时,记为点G

(1)求点EF的坐标;

(2)求经过EFG三点的抛物线的解析式;

(3)当点C的对应点落在直线l上时,求CD的长;

(4)在(2)中的抛物线上是否存在点P,使以EFP为顶点的三角形是直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.

来源:2016年湖北省恩施州中考数学试卷
  • 题型:未知
  • 难度:未知

如图,矩形OABC的两边OAOC分别在x轴和y轴的正半轴上,点B的坐标为( 4 3 , 4 ),点DCB上,且CDDB=2:1,OBAD于点E.平行于x轴的直线l从原点O出发,以每秒1个单位长度的速度沿y轴向上平移,到C点时停止;l与线段OBAD分别相交与MN两点,以MN为边作等边△MNP(点P在线段MN的下方).设直线l的运动时间为t(秒),△MNP与△OAB重叠部分的面积为S(平分单位).

(1)直接写出点E的坐标;

(2)求St的函数关系式;

(3)是否存在某一时刻t,使得 S = 1 2 S ΔABD 成立?若存在,请求出此时t的值;若不存在,请说明理由.

来源:2016年湖北省潜江市、天门市、仙桃市、江汉油田中考数学试卷
  • 题型:未知
  • 难度:未知

如图1,在△ ABC中,∠ ACB=90°,∠ B=30°, AC=4, DAB的中点, EF是△ ACD的中位线,矩形 EFGH的顶点都在△ ACD的边上.

(1)求线段 EFFG的长;

(2)如图2,将矩形 EFGH沿 AB向右平移,点 F落在 BC上时停止移动,设矩形移动的距离为 x,矩形与△ CBD重叠部分的面积为 S,求出 S关于 x的函数解析式;

(3)如图3,矩形 EFGH平移停止后,再绕点 G按顺时针方向旋转,当点 H落在 CD边上时停止旋转,此时矩形记作 E 1 F 1 GH 1,设旋转角为α,求cosα的值.

来源:2017年内蒙古兴安盟中考数学试卷(b卷)
  • 题型:未知
  • 难度:未知

已知在矩形中,的平分线边所在的直线交于点,点是线段上一定点(其中

(1)如图1,若点边上(不与重合),将绕点逆时针旋转后,角的两边分别交射线于点

①求证:      ②探究:之间有怎样的数量关系,并证明你的结论.

(2)拓展:如图2,若点的延长线上(不与重合),过点,交射线于点,你认为(1)中之间的数量关系是否仍然成立?若成立,给出证明;若不成立,请写出它们所满足的数量关系式,并说明理由.

来源:2016年福建省南平市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中, 为原点,四边形 是矩形,点 的坐标分别是 C ( 2 3 , 0 ) ,点 是对角线 上一动点(不与 重合),连结 ,作 ,交 轴于点 ,以线段 为邻边作矩形

(1)填空:点 的坐标为   

(2)是否存在这样的点 ,使得 是等腰三角形?若存在,请求出 的长度;若不存在,请说明理由;

(3)①求证: DE DB = 3 3

②设 ,矩形 的面积为 ,求 关于 的函数关系式(可利用①的结论),并求出 的最小值.

来源:2017年广东省中考数学试卷
  • 题型:未知
  • 难度:未知

如图,矩形 ABCD 中,点 P 为对角线 AC 所在直线上的一个动点,连接 PD ,过点 P PE PD ,交直线 AB 于点 E ,过点 P MN AB ,交直线 CD 于点 M ,交直线 AB 于点 N AB = 4 3 AD = 4

(1)如图1,①当点 P 在线段 AC 上时, PDM EPN 的数量关系为: PDM   =   EPN

DP PE 的值是   

(2)如图2,当点 P CA 延长线上时,(1)中的结论②是否成立?若成立,请证明;若不成立,说明理由;

(3)如图3,以线段 PD PE 为邻边作矩形 PEFD .设 PM 的长为 x ,矩形 PEFD 的面积为 y .请直接写出 y x 之间的函数关系式及 y 的最小值.

来源:2020年内蒙古赤峰市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,矩形 ABCD 中,点 P 为对角线 AC 所在直线上的一个动点,连接 PD ,过点 P PE PD ,交直线 AB 于点 E ,过点 P MN AB ,交直线 CD 于点 M ,交直线 AB 于点 N AB = 4 3 AD = 4

(1)如图1,①当点 P 在线段 AC 上时, PDM EPN 的数量关系为: PDM    EPN

DP PE 的值是   

(2)如图2,当点 P CA 延长线上时,(1)中的结论②是否成立?若成立,请证明;若不成立,说明理由;

(3)如图3,以线段 PD PE 为邻边作矩形 PEFD .设 PM 的长为 x ,矩形 PEFD 的面积为 y .请直接写出 y x 之间的函数关系式及 y 的最小值.

来源:2020年内蒙古赤峰市中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学矩形的性质试题