如图,矩形纸片 中, , .现将其沿 对折,使得点 落在边 上的点 处,折痕与边 交于点 ,则 的长为
A. B. C. D.
问题情境:
在综合与实践课上,老师让同学们以“矩形纸片的剪拼”为主题开展数学活动.如图1,将:矩形纸片 沿对角线 剪开,得到 和 .并且量得 , .
操作发现:
(1)将图1中的 以点 为旋转中心,按逆时针方向旋转 ,使 ,得到如图2所示的△ ,过点 作 的平行线,与 的延长线交于点 ,则四边形 的形状是 .
(2)创新小组将图1中的 以点 为旋转中心,按逆时针方向旋转,使 、 、 三点在同一条直线上,得到如图3所示的△ ,连接 ,取 的中点 ,连接 并延长至点 ,使 ,连接 、 ,得到四边形 ,发现它是正方形,请你证明这个结论.
实践探究:
(3)缜密小组在创新小组发现结论的基础上,进行如下操作:将 沿着 方向平移,使点 与点 重合,此时 点平移至 点, 与 相交于点 ,如图4所示,连接 ,试求 的值.
如图, 中, , 平分 交 于点 ,按下列步骤作图:
步骤1:分别以点 和点 为圆心,大于 的长为半径作弧,两弧相交于 , 两点;
步骤2:作直线 ,分别交 , 于点 , ;
步骤3:连接 , .
若 , ,则线段 的长为
A. B. C. D.
如图(1),已知点 在正方形 的对角线 上, ,垂足为点 , ,垂足为点 .
(1)证明与推断:
①求证:四边形 是正方形;
②推断: 的值为
(2)探究与证明:
将正方形 绕点 顺时针方向旋转 角 ,如图(2)所示,试探究线段 与 之间的数量关系,并说明理由;
(3)拓展与运用:
正方形 在旋转过程中,当 , , 三点在一条直线上时,如图(3)所示,延长 交 于点 .若 , ,则 .
如图,四边形 是矩形 ,要在矩形 内作一个以 为边的正方形 ,某位同学的作法如下:
①作 的平分线 . 交 于点 ;
②以点 为圆心, 长为半径画弧,交 于点 ,连接 .
(1)求证:四边形 是正方形;
(2)若 ,求图中阴影部分的面积.
如图, 是 的内接三角形, , .连接 并延长,交 于点 ,连接 .过点 作 的切线,与 的延长线相交于点 .
(1)求证: ;
(2)若 ,求线段 的长.
如图,在平行四边形 中, , ,过点 作边 的垂线 交 的延长线于点 ,点 是垂足,连接 、 , 交 于点 .则下列结论:①四边形 是正方形;② ;③ ;④ ,正确的个数是
A.1B.2C.3D.4
下列是关于某个四边形的三个结论:①它的对角线相等;②它是一个正方形;③它是一个矩形.下列推理过程正确的是
A.由②推出③,由③推出①B.由①推出②,由②推出③
C.由③推出①,由①推出②D.由①推出③,由③推出②
如图,在 中, , , , , 的平分线相交于点 ,过点 作 交 于点 ,则 的长为
A. B. C. D.
定义:有一组邻边相等,并且它们的夹角是直角的凸四边形叫做等腰直角四边形.
(1)如图1,等腰直角四边形 , , ,
①若 , ,求对角线 的长.
②若 ,求证: ,
(2)如图2,在矩形 中, , ,点 是对角线 上一点,且 ,过点 作直线分别交边 , 于点 , ,使四边形 是等腰直角四边形,求 的长.
如图,点 为正方形 外一点, ,将 绕 点逆时针方向旋转 得到 , 的延长线交 于 点.
(1)试判定四边形 的形状,并说明理由;
(2)已知 , ,求 的长.
在矩形纸片 中, , , 是边 上的点,将纸片沿 折叠,使点 落在点 处,连接 ,当 为直角三角形时, 的长为 .
综合与实践
问题情境:
如图①,点 为正方形 内一点, ,将 绕点 按顺时针方向旋转 ,得到 (点 的对应点为点 .延长 交 于点 ,连接 .
猜想证明:
(1)试判断四边形 的形状,并说明理由;
(2)如图②,若 ,请猜想线段 与 的数量关系并加以证明;
解决问题:
(3)如图①,若 , ,请直接写出 的长.
如图, 是 的直径,点 在 上(点 不与 , 重合),直线 交过点 的切线于点 ,过点 作 的切线 交 于点 .
(1)求证: ;
(2)若 ,求 的值.
试题篮
()