优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 正方形的判定与性质 / 计算题
初中数学

如图(1),已知点 G 在正方形 ABCD 的对角线 AC 上, GE BC ,垂足为点 E GF CD ,垂足为点 F

(1)证明与推断:

①求证:四边形 CEGF 是正方形;

②推断: AG BE 的值为       

(2)探究与证明:

将正方形 CEGF 绕点 C 顺时针方向旋转 α ( 0 ° < α < 45 ° ) ,如图(2)所示,试探究线段 AG BE 之间的数量关系,并说明理由;

(3)拓展与运用:

正方形 CEGF 在旋转过程中,当 B E F 三点在一条直线上时,如图(3)所示,延长 CG AD 于点 H .若 AG = 6 GH = 2 2 ,则 BC =       

来源:2018年湖北省襄阳市中考数学试卷
  • 题型:未知
  • 难度:未知

已知:如图所示,在平面直角坐标系 xOy 中, C = 90 ° OB = 25 OC = 20 ,若点 M 是边 OC 上的一个动点(与点 O C 不重合),过点 M MN / / OB BC 于点 N

(1)求点 C 的坐标;

(2)当 ΔMCN 的周长与四边形 OMNB 的周长相等时,求 CM 的长;

(3)在 OB 上是否存在点 Q ,使得 ΔMNQ 为等腰直角三角形?若存在,请求出此时 MN 的长;若不存在,请说明理由.

来源:2017年湖北省荆门市中考数学试卷
  • 题型:未知
  • 难度:未知

如图1,在矩形 ABCD 中, BC = 3 ,动点 P B 出发,以每秒1个单位的速度,沿射线 BC 方向移动,作 ΔPAB 关于直线 PA 的对称 ΔPAB ' ,设点 P 的运动时间为 t ( s )

(1)若 AB = 2 3

①如图2,当点 B ' 落在 AC 上时,显然 ΔPAB ' 是直角三角形,求此时 t 的值;

②是否存在异于图2的时刻,使得 ΔPCB ' 是直角三角形?若存在,请直接写出所有符合题意的 t 的值?若不存在,请说明理由.

(2)当 P 点不与 C 点重合时,若直线 PB ' 与直线 CD 相交于点 M ,且当 t < 3 时存在某一时刻有结论 PAM = 45 ° 成立,试探究:对于 t > 3 的任意时刻,结论“ PAM = 45 ° ”是否总是成立?请说明理由.

来源:2019年江苏省无锡市中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学正方形的判定与性质计算题