优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 四边形综合题 / 解答题
初中数学

爱好思考的小茜在探究两条直线的位置关系查阅资料时,发现了“中垂三角形”,即两条中线互相垂直的三角形称为“中垂三角形”.如图(1)、图(2)、图(3)中,AMBN是△ABC的中线, AM BN 于点P,像△ABC这样的三角形均为“中垂三角形”.设 BC a AC b AB c

【特例探究】

(1)如图1,当 tan PAB 1 c = 4 2 时,a  b  

如图2,当 PAB 30 ° c 2 时,a  b 

【归纳证明】

(2)请你观察(1)中的计算结果,猜想a2b2c2三者之间的关系,用等式表示出来,并利用图3证明你的结论.

【拓展证明】

(3)如图4,▱ABCD中,EF分别是ADBC的三等分点,且 AD 3 AE BC 3 BF ,连接AFBECE,且 BE CE EAFBE相交点G AD = 3 5 AB 3 ,求AF的长.

来源:2016年湖北省随州市中考数学试卷
  • 题型:未知
  • 难度:未知

(1)阅读材料:

教材中的问题,如图1,把5个边长为1的小正方形组成的十字形纸板剪开,使剪成的若干块能够拼成一个大正方形,小明的思考:因为剪拼前后的图形面积相等,且5个小正方形的总面积为5,所以拼成的大正方形边长为  ,故沿虚线 AB 剪开可拼成大正方形的一边,请在图1中用虚线补全剪拼示意图.

(2)类比解决:

如图2,已知边长为2的正三角形纸板 ABC ,沿中位线 DE 剪掉 ΔADE ,请把纸板剩下的部分 DBCE 剪开,使剪成的若干块能够拼成一个新的正三角形.

①拼成的正三角形边长为  

②在图2中用虚线画出一种剪拼示意图.

(3)灵活运用:

如图3,把一边长为 60 cm 的正方形彩纸剪开,用剪成的若干块拼成一个轴对称的风筝,其中 BCD = 90 ° ,延长 DC BC 分别与 AB AD 交于点 E F ,点 E F 分别为 AB AD 的中点,在线段 AC EF 处用轻质钢丝做成十字形风筝龙骨,在图3的正方形中画出一种剪拼示意图,并求出相应轻质钢丝的总长度.(说明:题中的拼接都是不重叠无缝隙无剩余)

来源:2016年江苏省常州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图①,正方形 ABCD中,点 O是对角线 AC的中点,点 P是线段 AO上(不与 AO重合)的一个动点,过点 PPEPBPE交边 CD于点 E

(1)求证: PBPE

(2)如图②,若正方形 ABCD的边长为2,过 EEFAC于点 F,在 P点运动的过程中, PF的长度是否发生变化?若不变,试求出这个不变的值;若变化,请说明理由.

(3)如图③,用等式表示线段 PCPACE之间的数量关系.

来源:2016年内蒙古鄂尔多斯市中考数学试卷
  • 题型:未知
  • 难度:未知

定义:有一组邻边相等,并且它们的夹角是直角的凸四边形叫做等腰直角四边形.

(1)如图1,等腰直角四边形 ABCD AB = BC ABC = 90 °

①若 AB = CD = 1 AB / / CD ,求对角线 BD 的长.

②若 AC BD ,求证: AD = CD

(2)如图2,在矩形 ABCD 中, AB = 5 BC = 9 ,点 P 是对角线 BD 上一点,且 BP = 2 PD ,过点 P 作直线分别交边 AD BC 于点 E F ,使四边形 ABFE 是等腰直角四边形,求 AE 的长.

来源:2017年浙江省金华市义乌市(绍兴市)中考数学试卷
  • 题型:未知
  • 难度:未知

如图,矩形ABCD中,AB=6AD=8PE分别是线段ACBC上的点,且四边形PEFD为矩形.

)若PCD是等腰三角形时,求AP的长;

)若 AP = 2 ,求CF的长

来源:2017年福建省中考数学试卷
  • 题型:未知
  • 难度:未知

如图,点 E F 分别在正方形 ABCD 的边 CD BC 上,且 DE = CF ,点 P 在射线 BC 上(点 P 不与点 F 重合).将线段 EP 绕点 E 顺时针旋转 90 ° 得到线段 EG ,过点 E GD 的垂线 QH ,垂足为点 H ,交射线 BC 于点 Q

(1)如图1,若点 E CD 的中点,点 P 在线段 BF 上,线段 BP QC EC 的数量关系为  

(2)如图2,若点 E 不是 CD 的中点,点 P 在线段 BF 上,判断(1)中的结论是否仍然成立.若成立,请写出证明过程;若不成立,请说明理由.

(3)正方形 ABCD 的边长为6, AB = 3 DE QC = 1 ,请直接写出线段 BP 的长.

来源:2019年辽宁省抚顺市中考数学试卷
  • 题型:未知
  • 难度:未知

已知四边形ABCD是菱形,AB=4,∠ABC=60°,∠EAF的两边分别与射线CBDC相交于点EF,且∠EAF=60°.

(1)如图1,当点E是线段CB的中点时,直接写出线段AEEFAF之间的数量关系;

(2)如图2,当点E是线段CB上任意一点时(点E不与BC重合),求证:BECF

(3)如图3,当点E在线段CB的延长线上,且∠EAB=15°时,求点FBC的距离.

来源:2016年广西南宁市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,线段 AB = 8 ,射线 BG AB P 为射线 BG 上一点,以 AP 为边作正方形 APCD ,且点 C D 与点 B AP 两侧,在线段 DP 上取一点 E ,使 EAP = BAP ,直线 CE 与线段 AB 相交于点 F (点 F 与点 A B 不重合).

(1)求证: ΔAEP ΔCEP

(2)判断 CF AB 的位置关系,并说明理由;

(3)求 ΔAEF 的周长.

来源:2019年江苏省泰州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图(1),菱形ABCD对角线ACBD的交点O是四边形EFGH对角线FH的中点,四个顶点ABCD分别在四边形EFGH的边EFFGGHHE上.

(1)求证:四边形EFGH是平行四边形;

(2)如图(2)若四边形EFGH是矩形,当ACFH重合时,已知,且菱形ABCD的面积是20,求矩形EFGH的长与宽.

来源:2016年广西北海市中考数学试卷
  • 题型:未知
  • 难度:未知

如图1,以 ABCD 的较短边 CD 为一边作菱形 CDEF ,使点 F 落在边 AD 上,连接 BE ,交 AF 于点 G

(1)猜想 BG EG 的数量关系,并说明理由;

(2)延长 DE BA 交于点 H ,其他条件不变:

①如图2,若 ADC = 60 ° ,求 DG BH 的值;

②如图3,若 ADC = α ( 0 ° < α < 90 ° ) ,直接写出 DG BH 的值(用含 α 的三角函数表示)

来源:2018年辽宁省锦州市中考数学试卷
  • 题型:未知
  • 难度:未知

(1)如图1,将矩形 ABCD 折叠,使 BC 落在对角线 BD 上,折痕为 BE ,点 C 落在点 C ' 处,若 ADB = 46 ° ,则 DBE 的度数为   °

(2)小明手中有一张矩形纸片 ABCD AB = 4 AD = 9

【画一画】

如图2,点 E 在这张矩形纸片的边 AD 上,将纸片折叠,使 AB 落在 CE 所在直线上,折痕设为 MN (点 M N 分别在边 AD BC 上),利用直尺和圆规画出折痕 MN (不写作法,保留作图痕迹,并用黑色水笔把线段描清楚);

【算一算】

如图3,点 F 在这张矩形纸片的边 BC 上,将纸片折叠,使 FB 落在射线 FD 上,折痕为 GF ,点 A B 分别落在点 A ' B ' 处,若 AG = 7 3 ,求 B ' D 的长;

【验一验】

如图4,点 K 在这张矩形纸片的边 AD 上, DK = 3 ,将纸片折叠,使 AB 落在 CK 所在直线上,折痕为 HI ,点 A B 分别落在点 A ' B ' 处,小明认为 B ' I 所在直线恰好经过点 D ,他的判断是否正确,请说明理由.

来源:2018年江苏省镇江市中考数学试卷
  • 题型:未知
  • 难度:未知

如图1,将 ΔABC 纸片沿中位线 EH 折叠,使点 A 对称点 D 落在 BC 边上,再将纸片分别沿等腰 ΔBED 和等腰 ΔDHC 的底边上的高线 EF HG 折叠,折叠后的三个三角形拼合形成一个矩形,类似地,对多边形进行折叠,若翻折后的图形恰能拼合成一个无缝隙、无重叠的矩形,这样的矩形称为叠合矩形.

(1)将 ABCD 纸片按图2的方式折叠成一个叠合矩形 AEFG ,则操作形成的折痕分别是线段     S 矩形 AEFG : S ABCD =   

(2) ABCD 纸片还可以按图3的方式折叠成一个叠合矩形 EFGH ,若 EF = 5 EH = 12 ,求 AD 的长;

(3)如图4,四边形 ABCD 纸片满足 AD / / BC AD < BC AB BC AB = 8 CD = 10 ,小明把该纸片折叠,得到叠合正方形,请你帮助画出叠合正方形的示意图,并求出 AD BC 的长.

来源:2017年浙江省金华市中考数学试卷
  • 题型:未知
  • 难度:未知

定义:有三个内角相等的四边形叫三等角四边形.

(1)三等角四边形 ABCD 中, A = B = C ,求 A 的取值范围;

(2)如图,折叠平行四边形纸片 DEBF ,使顶点 E F 分别落在边 BE BF 上的点 A C 处,折痕分别为 DG DH .求证:四边形 ABCD 是三等角四边形.

(3)三等角四边形 ABCD 中, A = B = C ,若 CB = CD = 4 ,则当 AD 的长为何值时, AB 的长最大,其最大值是多少?并求此时对角线 AC 的长.

来源:2016年浙江省台州市中考数学试卷
  • 题型:未知
  • 难度:未知

四边形 ABCD 是边长为4的正方形,点 E 在边 AD 所在直线上,连接 CE ,以 CE 为边,作正方形 CEFG (点 D ,点 F 在直线 CE 的同侧),连接 BF

(1)如图1,当点 E 与点 A 重合时,请直接写出 BF 的长;

(2)如图2,当点 E 在线段 AD 上时, AE = 1

①求点 F AD 的距离;

②求 BF 的长;

(3)若 BF = 3 10 ,请直接写出此时 AE 的长.

来源:2017年辽宁省沈阳市中考数学试卷
  • 题型:未知
  • 难度:未知

已知:点P是平行四边形ABCD对角线AC所在直线上的一个动点(点P不与点AC重合),分别过点AC向直线BD作垂线,垂足分别为点EF,点OAC的中点.

(1)当点P与点O重合时如图1,易证 OE OF (不需证明)

(2)直线BP绕点B逆时针方向旋转,当 OFE 30 ° 时,如图2、图3的位置,猜想线段CFAEOE之间有怎样的数量关系?请写出你对图2、图3的猜想,并选择一种情况给予证明.

来源:2016年黑龙江省七台河市中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学四边形综合题解答题