优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 圆周角定理 / 解答题
初中数学

如图1,四边形 ABCD 内接于 O AD 为直径,点 C CE AB 于点 E ,连接 AC

(1)求证: CAD = ECB

(2)若 CE O 的切线, CAD = 30 ° ,连接 OC ,如图2.

①请判断四边形 ABCO 的形状,并说明理由;

②当 AB = 2 时,求 AD AC CD ̂ 围成阴影部分的面积.

来源:2021年江西省中考数学试卷
  • 题型:未知
  • 难度:未知

在一次数学探究活动中,李老师设计了一份活动单:

已知线段 BC = 2 ,使用作图工具作 BAC = 30 ° ,尝试操作后思考:

(1)这样的点 A 唯一吗?

(2)点 A 的位置有什么特征?你有什么感悟?

“追梦”学习小组通过操作、观察、讨论后汇报:点 A 的位置不唯一,它在以 BC 为弦的圆弧上(点 B C 除外), .小华同学画出了符合要求的一条圆弧(如图 1 )

(1)小华同学提出了下列问题,请你帮助解决.

①该弧所在圆的半径长为   

ΔABC 面积的最大值为   

(2)经过比对发现,小明同学所画的角的顶点不在小华所画的圆弧上,而在如图1所示的弓形内部,我们记为 A ' ,请你根据图1证明 BA ' C > 30 °

(3)请你运用所学知识,结合以上活动经验,解决问题:如图2,已知矩形 ABCD 的边长 AB = 2 BC = 3 ,点 P 在直线 CD 的左侧,且 tan DPC = 4 3

①线段 PB 长的最小值为   

②若 S ΔPCD = 2 3 S ΔPAD ,则线段 PD 长为   

来源:2021年江苏省扬州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图1, AB O 的直径,点 E O 上一动点,且不与 A B 两点重合, EAB 的平分线交 O 于点 C ,过点 C CD AE ,交 AE 的延长线于点 D

(1)求证: CD O 的切线;

(2)求证: A C 2 = 2 AD AO

(3)如图2,原有条件不变,连接 BE BC ,延长 AB 至点 M EBM 的平分线交 AC 的延长线于点 P CAB 的平分线交 CBM 的平分线于点 Q .求证:无论点 E 如何运动,总有 P = Q

来源:2021年湖南省永州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, BAC = 90 ° ,点 E BC 边上,过 A C E 三点的 O AB 边于另一点 F ,且 F AE ̂ 的中点, AD O 的一条直径,连接 DE 并延长交 AB 边于 M 点.

(1)求证:四边形 CDMF 为平行四边形;

(2)当 CD = 2 5 AB 时,求 sin ACF 的值.

来源:2021年湖北省荆门市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, PA PB O 的切线, A B 是切点, AC O 的直径,连接 OP ,交 O 于点 D ,交 AB 于点 E

(1)求证: BC / / OP

(2)若 E 恰好是 OD 的中点,且四边形 OAPB 的面积是 16 3 ,求阴影部分的面积;

(3)若 sin BAC = 1 3 ,且 AD = 2 3 ,求切线 PA 的长.

来源:2021年湖北省黄石市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AB = AC ,以 AB 为直径的 O BC 相交于点 D DE AC ,垂足为 E

(1)求证: DE O 的切线;

(2)若弦 MN 垂直于 AB ,垂足为 G AG AB = 1 4 MN = 3 ,求 O 的半径;

(3)在(2)的条件下,当 BAC = 36 ° 时,求线段 CE 的长.

来源:2021年黑龙江省绥化市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,已知 ΔABC 内接于 O AB O 的直径, CAB 的平分线交 BC 于点 D ,交 O 于点 E ,连接 EB ,作 BEF = CAE ,交 AB 的延长线于点 F

(1)求证: EF O 的切线;

(2)若 BF = 10 EF = 20 ,求 O 的半径和 AD 的长.

image.png

来源:2021年贵州省铜仁市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 O 中, AC O 的直径, AB O 的弦,点 E AC ̂ 的中点,过点 E AB 的垂线,交 AB 于点 M ,交 O 于点 N ,分别连接 EB CN

(1) EM BE 的数量关系是   

(2)求证: EB ̂ = CN ̂

(3)若 AM = 3 MB = 1 ,求阴影部分图形的面积.

来源:2021年贵州省贵阳市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, C = 90 ° D AB 上的一点,以 AD 为直径的 O BC 相切于点 E ,连接 AE DE

(1)求证: AE 平分 BAC

(2)若 B = 30 ° ,求 CE DE 的值.

来源:2021年广西贺州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, ΔABC 内接于 O D O 的直径 AB 的延长线上一点, DCB = OAC .过圆心 O BC 的平行线交 DC 的延长线于点 E

(1)求证: CD O 的切线;

(2)若 CD = 4 CE = 6 ,求 O 的半径及 tan OCB 的值.

来源:2021年甘肃省武威市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, O ΔABC 的外接圆, AD O 的直径, AD BC 于点 E

(1)求证: BAD = CAD

(2)连接 BO 并延长,交 AC 于点 F ,交 O 于点 G ,连接 GC .若 O 的半径为5, OE = 3 ,求 GC OF 的长.

来源:2021年北京市中考数学试卷
  • 题型:未知
  • 难度:未知

定义:三角形一个内角的平分线和与另一个内角相邻的外角平分线相交所成的锐角称为该三角形第三个内角的遥望角.

(1)如图1, E ΔABC A 的遥望角,若 A = α ,请用含 α 的代数式表示 E

(2)如图2,四边形 ABCD 内接于 O AD ̂ = BD ̂ ,四边形 ABCD 的外角平分线 DF O 于点 F ,连结 BF 并延长交 CD 的延长线于点 E .求证: BEC ΔABC BAC 的遥望角.

(3)如图3,在(2)的条件下,连结 AE AF ,若 AC O 的直径.

①求 AED 的度数;

②若 AB = 8 CD = 5 ,求 ΔDEF 的面积.

来源:2020年浙江省宁波市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,已知 AC BD O 的两条直径,连接 AB BC OE AB 于点 E ,点 F 是半径 OC 的中点,连接 EF

(1)设 O 的半径为1,若 BAC = 30 ° ,求线段 EF 的长.

(2)连接 BF DF ,设 OB EF 交于点 P

①求证: PE = PF

②若 DF = EF ,求 BAC 的度数.

来源:2020年浙江省杭州市中考数学试卷
  • 题型:未知
  • 难度:未知

问题提出

(1)如图1,在 Rt Δ ABC 中, ACB = 90 ° AC > BC ACB 的平分线交 AB 于点 D .过点 D 分别作 DE AC DF BC .垂足分别为 E F ,则图1中与线段 CE 相等的线段是        

问题探究

(2)如图2, AB 是半圆 O 的直径, AB = 8 P AB ̂ 上一点,且 PB ̂ = 2 PA ̂ ,连接 AP BP APB 的平分线交 AB 于点 C ,过点 C 分别作 CE AP CF BP ,垂足分别为 E F ,求线段 CF 的长.

问题解决

(3)如图3,是某公园内“少儿活动中心”的设计示意图.已知 O 的直径 AB = 70 m ,点 C O 上,且 CA = CB P AB 上一点,连接 CP 并延长,交 O 于点 D .连接 AD BD .过点 P 分别作 PE AD PF BD ,垂足分别为 E F .按设计要求,四边形 PEDF 内部为室内活动区,阴影部分是户外活动区,圆内其余部分为绿化区.设 AP 的长为 x ( m ) ,阴影部分的面积为 y ( m 2 )

①求 y x 之间的函数关系式;

②按照“少儿活动中心”的设计要求,发现当 AP 的长度为 30 m 时,整体布局比较合理.试求当 AP = 30 m 时.室内活动区(四边形 PEDF ) 的面积.

来源:2020年陕西省中考数学试卷
  • 题型:未知
  • 难度:未知

如图,已知 P 为锐角 MAN 内部一点,过点 P PB AM 于点 B PC AN 于点 C ,以 PB 为直径作 O ,交直线 CP 于点 D ,连接 AP BD AP O 于点 E

(1)求证: BPD = BAC

(2)连接 EB ED ,当 tan MAN = 2 AB = 2 5 时,在点 P 的整个运动过程中.

①若 BDE = 45 ° ,求 PD 的长.

②若 ΔBED 为等腰三角形,求所有满足条件的 BD 的长.

(3)连接 OC EC OC AP 于点 F ,当 tan MAN = 1 OC / / BE 时,记 ΔOFP 的面积为 S 1 ΔCFE 的面积为 S 2 ,请写出 S 1 S 2 的值.

来源:2018年浙江省温州市中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学圆周角定理解答题