如图,在平行四边形ABCD中,AD=5cm, AP=8cm , AP平分∠DAB,交DC于点P,过点B作BE⊥AD于点E,BE交AP于点F,则tan∠BFP= .
如图,在△ABC中,点D、E、F分别在边AB,BC,CA上,且DE∥CA,DF∥BA.下列四种说法:
①四边形AEDF是平行四边形;
②如果∠BAC=90°,那么四边形AEDF是矩形;
③如果AD平分∠BAC,那么四边形AEDF是菱形;
④如果AD⊥BC且AB=AC,那么四边形AEDF是菱形.
其中,正确的有 (只填写序号).
如图,在矩形ABCD中,点E,F分别在边AB,BC上,且AE=AB,将矩形沿直线EF折叠,点B恰好落在AD边上的点P处,连接BP交EF于点Q,对于下列结论:①EF=2BE;②PF=2PE;③FQ=4EQ;④△PBF是等边三角形.其中正确的是( )
A.①② | B.②③ | C.①③ | D.①④ |
如图,矩形中,,点是边上一点,连接,把沿折叠,使点落在点处,当△为直角三角形时,的长为
如图是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形,如果大正方形的面积是13,小正方形的面积是1,那么每个直角三角形的周长为 .
已知:四边形ABED中,AD⊥DE、BE⊥DE.
(1)如图1,点C是边DE的中点,且AB=2AD=2BE.判断△ABC的形状: (不必说明理由);
(2)保持图1中△ABC固定不变,将直线DE绕点C旋转到图2中所在的MN的位置(垂线段AD、BE在直线MN的同侧).试探究线段AD、BE、DE长度之间有什么关系?并给予证明;
(3)保持图2中△ABC固定不变,继续绕点C旋转DE所在的直线MN到图3中的位置(垂线段AD、BE在直线MN的异侧).⑵中结论是否依然成立,若成立请证明;若不成立,请写出新的结论,并给予证明.
试题篮
()