优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 圆内接四边形的性质 / 填空题
初中数学

如图,正方形ABCD中,点E、F分别在AB、BC上,DH⊥EF于H,DA=HD,EH=2,HF=3.则正方形ABCD的边长为        

  • 题型:未知
  • 难度:未知

有一张一个角为30°,最小边长为4的直角三角形纸片,沿图中所示的中位线剪开后,将两部分拼成一个四边形,所得四边形的周长是            

  • 题型:未知
  • 难度:未知

如图,矩形ABCD的对角线AC=10,BC=8,则图中五个小矩形的周长之和为_______.

  • 题型:未知
  • 难度:未知

如图,设四边形ABCD是边长为1的正方形,以对角线AC为边作第二个正方形ACEF、再以对角线AE为边作笫三个正方形AEGH,如此下去….若正方形ABCD的边长记为a1,按上述方法所作的正方形的边长依次为a2,a3,a4,…,an,则an        

  • 题型:未知
  • 难度:未知

将两块全等的含30°角的三角尺如图1摆放在一起,设较短直角边为1,如图2,将Rt△BCD沿射线BD方向平移,在平移的过程中,当点B的移动距离为        时,四边ABC1D1为矩形;当点B的移动距离为          时,四边形ABC1D1为菱形.

  • 题型:未知
  • 难度:未知

如图,正六边形硬纸片ABCDEF在桌面上由图1的起始位置沿直线l不滑行地翻滚一周后到图2位置.若正六边形的边长为2cm,则正六边形的中心O运动的路程为         cm.

  • 题型:未知
  • 难度:未知

如图,在菱形ABCD中,AB=6,∠ABC=60°,点E在AD上,且AE=2,点P是对角线BD上的一个动点,则PE+PA的最小值是                    

  • 题型:未知
  • 难度:未知

已知正方形ABC1D1的边长为1,延长C1D1到A1,以A1C1为边向右作正方形A1C1C2D2,延长C2D2到A2,以A2C2为边向右作正方形A2C2C3D3(如图所示),以此类推…,若A1C1=2,且点A,D2, D3,…,D10都在同一直线上,则正方形A9C9C10D10的边长是__________________________

  • 题型:未知
  • 难度:未知

如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连结BD、DP,BD与CF相交于点H.给出下列结论:
①△ABE≌△DCF;②;③;④
其中正确的是         .(写出所有正确结论的序号)

  • 题型:未知
  • 难度:未知

如图,已知菱形ABCD的对角线AC=2,∠BAD=60°,BD边上有2013个不同的点p1,p2,…,p2013,过pi(i=1,2,…,2013)作PiEi⊥AB于Ei,PiFi⊥AD于Fi,则P1E1+P1F1+P2E2+P2F2+…P2013E2013+P2013F2013的值为            

  • 题型:未知
  • 难度:未知

如图,菱形纸片ABCD中,∠A=60°,将纸片折叠,点A、D分别落在A′、D′处,且A′D′经过B,EF为折痕,当D′F⊥CD时,的值为    

  • 题型:未知
  • 难度:未知

对正方形ABCD进行分割,如图1,其中E、F分别是BC、CD的中点,M、N、G分别是OB、OD、EF的中点,沿分化线可以剪出一副“七巧板”,用这些部件可以拼出很多图案,图2就是用其中6块拼出的“飞机”.若△GOM的面积为1,则“飞机”的面积为     

  • 题型:未知
  • 难度:未知

如图1,在正方形ABCD中,延长BC至M,使BM=DN,连接MN交BD延长线于点E.

(1)求证:BD+2DE=BM .
(2)如图2,连接BN交AD于点F,连接MF交BD于点G.若AF:FD=1:2,且CM=2,则线段DG=_______.

  • 题型:未知
  • 难度:未知

已知菱形ABCD边长为5cm,tan∠DAB=,连接AC、BD,过点B作BE⊥AB分别交AC、CD于E、F。若点P为AD上一点,且∠DPE+∠DAB=900,则AP长为          

  • 题型:未知
  • 难度:未知

如图,菱形OABC的面积为3,顶点O的坐标为(0,0),顶点A的坐标为(3,0),顶点B在第一象限,边BC与y轴交于点D,点E在边OA上.将四边形ABDE沿直线DE翻折,使点A落在第四象限的点F处,且FE⊥EA.则直线OF的解析式为        

  • 题型:未知
  • 难度:未知

初中数学圆内接四边形的性质填空题