优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 直线与圆的位置关系
初中数学

如图,在等腰 ΔABC 中, AB = BC ,以 BC 为直径的 O AC 相交于点 D ,过点 D DE AB CB 延长线于点 E ,垂足为点 F

(1)判断 DE O 的位置关系,并说明理由;

(2)若 O 的半径 R = 5 tan C = 1 2 ,求 EF 的长.

来源:2017年辽宁省盘锦市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, O 的半径为2,圆心 O 到直线 l 的距离为4,有一内角为 60 ° 的菱形,当菱形的一边在直线 l 上,另有两边所在的直线恰好与 O 相切,此时菱形的边长为                

来源:2016年山东省淄博市中考数学试卷
  • 题型:未知
  • 难度:未知

已知点 P ( x 0 y 0 ) 和直线 y = kx + b ,则点 P 到直线 y = kx + b 的距离证明可用公式 d = | k x 0 - y 0 + b | 1 + k 2 计算.

例如:求点 P ( - 1 , 2 ) 到直线 y = 3 x + 7 的距离.

解:因为直线 y = 3 x + 7 ,其中 k = 3 b = 7

所以点 P ( - 1 , 2 ) 到直线 y = 3 x + 7 的距离为: d = | k x 0 - y 0 + b | 1 + k 2 = | 3 × ( - 1 ) - 2 + 7 | 1 + 3 2 = 2 10 = 10 5

根据以上材料,解答下列问题:

(1)求点 P ( 1 , - 1 ) 到直线 y = x - 1 的距离;

(2)已知 Q 的圆心 Q 坐标为 ( 0 , 5 ) ,半径 r 为2,判断 Q 与直线 y = 3 x + 9 的位置关系并说明理由;

(3)已知直线 y = - 2 x + 4 y = - 2 x - 6 平行,求这两条直线之间的距离.

来源:2016年山东省济宁市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, ΔAOB 中, O = 90 ° AO = 8 cm BO = 6 cm ,点 C A 点出发,在边 AO 上以 2 cm / s 的速度向 O 点运动,与此同时,点 D 从点 B 出发,在边 BO 上以 1 . 5 cm / s 的速度向 O 点运动,过 OC 的中点 E CD 的垂线 EF ,则当点 C 运动了   s 时,以 C 点为圆心, 1 . 5 cm 为半径的圆与直线 EF 相切.

来源:2016年江苏省无锡市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,直线 AD 经过 O 上的点 A ΔABC O 的内接三角形,并且 CAD = B

(1)判断直线 AD O 的位置关系,并说明理由;

(2)若 CAD = 30 ° O 的半径为1,求图中阴影部分的面积.(结果保留 π )

来源:2018年辽宁省丹东市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, C = 90 ° ,点 O D 分别为 AB BC 的中点,连接 OD ,作 O AC 相切于点 E ,在 AC 边上取一点 F ,使 DF = DO ,连接 DF

(1)判断直线 DF O 的位置关系,并说明理由;

(2)当 A = 30 ° CF = 2 时,求 O 的半径.

来源:2018年辽宁省本溪市中考数学试卷
  • 题型:未知
  • 难度:未知

已知 O 的半径为 5 cm ,圆心 O 到直线 l 的距离为 5 cm ,则直线 l O 的位置关系为 (    )

A.相交B.相切C.相离D.无法确定

来源:2018年湖南省湘西州中考数学试卷
  • 题型:未知
  • 难度:未知

如图, ΔABC 中, BAC = 120 ° AB = AC = 6 P 是底边 BC 上的一个动点 ( P B C 不重合),以 P 为圆心, PB 为半径的 P 与射线 BA 交于点 D ,射线 PD 交射线 CA 于点 E

(1)若点 E 在线段 CA 的延长线上,设 BP = x AE = y ,求 y 关于 x 的函数关系式,并写出 x 的取值范围.

(2)当 BP = 2 3 时,试说明射线 CA P 是否相切.

(3)连接 PA ,若 S ΔAPE = 1 8 S ΔABC ,求 BP 的长.

来源:2016年贵州省遵义市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, ΔABC 中, BAC = 120 ° AB = AC = 6 P 是底边 BC 上的一个动点 ( P B C 不重合),以 P 为圆心, PB 为半径的 P 与射线 BA 交于点 D ,射线 PD 交射线 CA 于点 E

(1)若点 E 在线段 CA 的延长线上,设 BP = x AE = y ,求 y 关于 x 的函数关系式,并写出 x 的取值范围.

(2)当 BP = 2 3 时,试说明射线 CA P 是否相切.

(3)连接 PA ,若 S ΔAPE = 1 8 S ΔABC ,求 BP 的长.

来源:2016年贵州省遵义市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,已知 AC AD O 的两条割线, AC O 交于 B C 两点, AD 过圆心 O 且与 O 交于 E D 两点, OB 平分 AOC

(1)求证: ΔACD ΔABO

(2)过点 E 的切线交 AC F ,若 EF / / OC OC = 3 ,求 EF 的值. [ 提示: ( 2 + 1 ) ( 2 1 ) = 1 ]

来源:2019年广西百色市中考数学试卷
  • 题型:未知
  • 难度:未知

以坐标原点 O 为圆心,作半径为2的圆,若直线 y = x + b O 相交,则 b 的取值范围是 (    )

A. 0 b < 2 2 B. 2 2 b 2 2 C. 2 3 < b < 2 3 D. 2 2 < b < 2 2

来源:2017年广西百色市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, ABC = 90 °

(1)作 ACB 的平分线交 AB 边于点 O ,再以点 O 为圆心, OB 的长为半径作 O ;(要求:不写做法,保留作图痕迹)

(2)判断(1)中 AC O 的位置关系,直接写出结果.

来源:2018年甘肃省金昌市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 ΔAOB 中, AOB 为直角, OA = 6 OB = 8 ,半径为2的动圆圆心 Q 从点 O 出发,沿着 OA 方向以1个单位长度 / 秒的速度匀速运动,同时动点 P 从点 A 出发,沿着 AB 方向也以1个单位长度 / 秒的速度匀速运动,设运动时间为 t ( 0 < t 5 ) P 为圆心, PA 长为半径的 P AB OA 的另一个交点分别为 C D ,连接 CD QC

(1)当 t 为何值时,点 Q 与点 D 重合?

(2)当 Q 经过点 A 时,求 P OB 截得的弦长.

(3)若 P 与线段 QC 只有一个公共点,求 t 的取值范围.

来源:2016年四川省攀枝花市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, ABC = 90 ° AC 的垂直平分线分别与 AC BC AB 的延长线相交于点 D E F O ΔBEF 的外接圆, EBF 的平分线交 EF 于点 G ,交 O 于点 H ,连接 BD FH

(1)试判断 BD O 的位置关系,并说明理由;

(2)当 AB = BE = 1 时,求 O 的面积;

(3)在(2)的条件下,求 HG · HB 的值.

来源:2016年四川省内江市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,给定一个半径长为2的圆,圆心O到水平直线l的距离为d,即 OM d .我们把圆上到直线l的距离等于1的点的个数记为m.如 d 0 时,l为经过圆心O的一条直线,此时圆上有四个到直线l的距离等于1的点,即 m 4 ,由此可知:

(1)当 d 3 时,m  

(2)当 m 2 时,d的取值范围是   

来源:2016年湖南省永州市中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学直线与圆的位置关系试题